variables = [
'total_school',
'total_school1',
'total_school2',
'total_school3',
'total_school4',
'total_school5',
'state_govt_school',
'state_govt_school1',
'state_govt_school2',
'state_govt_school3',
'state_govt_school4',
'state_govt_school5',
'local_govt_school',
'local_govt_school1',
'local_govt_school2',
'local_govt_school3',
'local_govt_school4',
'local_govt_school5',
'local_govt_school5',
'private_school',
'private_school1',
'private_school2',
'private_school3',
'private_school4',
'private_school5',
'schools_opened',
'schools_opened1',
'schools_opened2',
'schools_opened3',
'schools_opened4',
'schools_opened5',
'state_govt_schools_opened',
'state_govt_schools_opened1',
'state_govt_schools_opened2',
'state_govt_schools_opened3',
'state_govt_schools_opened4',
'state_govt_schools_opened5',
'local_govt_schools_opened',
'local_govt_schools_opened1',
'local_govt_schools_opened2',
'local_govt_schools_opened3',
'local_govt_schools_opened4',
'local_govt_schools_opened5',
'private_schools_opened',
'private_schools_opened1',
'private_schools_opened2',
'private_schools_opened3',
'private_schools_opened4',
'private_schools_opened5',
'state_govt_funds',
'state_govt_funds1',
'state_govt_funds2',
'state_govt_funds3',
'state_govt_funds4',
'state_govt_funds5',
'state_govt_reciepts',
'state_govt_reciepts1',
'state_govt_reciepts2',
'state_govt_reciepts3',
'state_govt_reciepts4',
'state_govt_reciepts5',
'state_govt_expenditure',
'state_govt_expenditure1',
'state_govt_expenditure2',
'state_govt_expenditure3',
'state_govt_expenditure4',
'state_govt_expenditure5',
'local_govt_funds',
'local_govt_funds1',
'local_govt_funds2',
'local_govt_funds3',
'local_govt_funds4',
'local_govt_funds5',
'local_govt_reciepts',
'local_govt_reciepts1',
'local_govt_reciepts2',
'local_govt_reciepts3',
'local_govt_reciepts4',
'local_govt_reciepts5',
'local_govt_expenditure',
'local_govt_expenditure1',
'local_govt_expenditure2',
'local_govt_expenditure3',
'local_govt_expenditure4',
'local_govt_expenditure5',
'private_funds',
'private_funds1',
'private_funds2',
'private_funds3',
'private_funds4',
'private_funds5',
'private_reciepts',
'private_reciepts1',
'private_reciepts2',
'private_reciepts3',
'private_reciepts4',
'private_reciepts5',
'private_expenditure',
'private_expenditure1',
'private_expenditure2',
'private_expenditure3',
'private_expenditure4',
'private_expenditure5',
'total_funds',
'total_funds1',
'total_funds2',
'total_funds3',
'total_funds4',
'total_funds5',
'total_reciepts',
'total_reciepts1',
'total_reciepts2',
'total_reciepts3',
'total_reciepts4',
'total_reciepts5',
'total_expenditure',
'total_expenditure1',
'total_expenditure2',
'total_expenditure3',
'total_expenditure4',
'total_expenditure5',
]
#Get all variables
def get_ac_variables(row):
#print(pd.DataFrame(row).T)
next_elect = acdf[(acdf['state_code'] == row['state_code']) & (acdf['constituency_no'] == row['constituency_no']) & (acdf['datetime'] > row['datetime'])][0:1]
if len(next_elect) < 1:
next_elect = pd.DataFrame(row).T
next_elect['dyear'] = next_elect['dyear'] + 5
next_elect['datetime'] = next_elect['datetime'] + pd.DateOffset(years=5)
#print(next_elect)
#delta_year = math.floor((next_elect['datetime'].dt.year - row['datetime'].year)/5)
delta_year = 1
if not delta_year:
delta_year = 1
#print(delta_year)
#Starting of Election Term
try:
df1 = merge_df[(merge_df['ST_CODE'] == row['state_code']) & (merge_df['AC_NO'] == row['constituency_no'])]
df_count = df1[['SCHCD', 'ESTDYEAR']].drop_duplicates(subset=None, keep='first', inplace=False)
total_school = df_count.shape[0]
total_school1 = df_count[df_count['ESTDYEAR'] <= (row['dyear'] + delta_year-1)].shape[0]
total_school2 = df_count[df_count['ESTDYEAR'] <= (row['dyear'] + delta_year+0)].shape[0]
total_school3 = df_count[df_count['ESTDYEAR'] <= (row['dyear'] + delta_year+1)].shape[0]
total_school4 = df_count[df_count['ESTDYEAR'] <= (row['dyear'] + delta_year+2)].shape[0]
total_school5 = df_count[df_count['ESTDYEAR'] <= (row['dyear'] + delta_year+3)].shape[0]
df11 = df1[df1['SCHMGT'].isin([1, 2])][['SCHCD', 'ESTDYEAR']].drop_duplicates(subset=None, keep='first', inplace=False)
state_govt_school = df11.shape[0]
state_govt_school1 = df11[df11['ESTDYEAR'] <= (row['dyear'] + delta_year-1)].shape[0]
state_govt_school2 = df11[df11['ESTDYEAR'] <= (row['dyear'] + delta_year+0)].shape[0]
state_govt_school3 = df11[df11['ESTDYEAR'] <= (row['dyear'] + delta_year+1)].shape[0]
state_govt_school4 = df11[df11['ESTDYEAR'] <= (row['dyear'] + delta_year+2)].shape[0]
state_govt_school5 = df11[df11['ESTDYEAR'] <= (row['dyear'] + delta_year+3)].shape[0]
df12 = df1[df1['SCHMGT'].isin([3])][['SCHCD', 'ESTDYEAR']].drop_duplicates(subset=None, keep='first', inplace=False)
local_govt_school = df12['SCHCD'].shape[0]
local_govt_school1 = df12[df12['ESTDYEAR'] <= (row['dyear'] + delta_year-1)].shape[0]
local_govt_school2 = df12[df12['ESTDYEAR'] <= (row['dyear'] + delta_year+0)].shape[0]
local_govt_school3 = df12[df12['ESTDYEAR'] <= (row['dyear'] + delta_year+1)].shape[0]
local_govt_school4 = df12[df12['ESTDYEAR'] <= (row['dyear'] + delta_year+2)].shape[0]
local_govt_school5 = df12[df12['ESTDYEAR'] <= (row['dyear'] + delta_year+3)].shape[0]
df13 = df1[df1['SCHMGT'].isin([4,5])][['SCHCD', 'ESTDYEAR']].drop_duplicates(subset=None, keep='first', inplace=False)
private_school = df13['SCHCD'].shape[0]
private_school1 = df13[df13['ESTDYEAR'] <= (row['dyear'] + delta_year-1)].shape[0]
private_school2 = df13[df13['ESTDYEAR'] <= (row['dyear'] + delta_year+0)].shape[0]
private_school3 = df13[df13['ESTDYEAR'] <= (row['dyear'] + delta_year+1)].shape[0]
private_school4 = df13[df13['ESTDYEAR'] <= (row['dyear'] + delta_year+2)].shape[0]
private_school5 = df13[df13['ESTDYEAR'] <= (row['dyear'] + delta_year+3)].shape[0]
df2 = df1[(merge_df['ESTDYEAR'] >= row['dyear']) & (merge_df['ESTDYEAR'] < next_elect['dyear'].values[0])]
schools_opened = df2.shape[0]
schools_opened1 = df2[df2['ESTDYEAR'] == (row['dyear'] + delta_year-1)].shape[0]
schools_opened2 = df2[df2['ESTDYEAR'] == (row['dyear'] + delta_year+0)].shape[0]
schools_opened3 = df2[df2['ESTDYEAR'] == (row['dyear'] + delta_year+0)].shape[0]
schools_opened4 = df2[df2['ESTDYEAR'] == (row['dyear'] + delta_year+2)].shape[0]
schools_opened5 = df2[df2['ESTDYEAR'] >= (row['dyear'] + delta_year+3)].shape[0]
df3 = df1[(merge_df['dyear'] >= row['dyear']) & (merge_df['dyear'] < next_elect['dyear'].values[0])]
#print(df3['dyear'])
total_funds = df3["FUNDS_R"].sum()
total_funds1 = df3[df3['dyear'] == (row['dyear'] + delta_year-1)]["FUNDS_R"].sum()
total_funds2 = df3[df3['dyear'] == (row['dyear'] + delta_year+0)]["FUNDS_R"].sum()
total_funds3 = df3[df3['dyear'] == (row['dyear'] + delta_year+1)]["FUNDS_R"].sum()
total_funds4 = df3[df3['dyear'] == (row['dyear'] + delta_year+2)]["FUNDS_R"].sum()
total_funds5 = df3[df3['dyear'] >= (row['dyear'] + delta_year+3)]["FUNDS_R"].sum()
total_reciepts = df3[["CONTI_R", "SCHMNTCGRANT_R", "TLM_R"]].sum().sum()
total_reciepts1 = df3[df3['dyear'] == (row['dyear'] + delta_year-1)][["CONTI_R", "SCHMNTCGRANT_R", "TLM_R"]].sum().sum()
total_reciepts2 = df3[df3['dyear'] == (row['dyear'] + delta_year+0)][["CONTI_R", "SCHMNTCGRANT_R", "TLM_R"]].sum().sum()
total_reciepts3 = df3[df3['dyear'] == (row['dyear'] + delta_year+1)][["CONTI_R", "SCHMNTCGRANT_R", "TLM_R"]].sum().sum()
total_reciepts4 = df3[df3['dyear'] == (row['dyear'] + delta_year+2)][["CONTI_R", "SCHMNTCGRANT_R", "TLM_R"]].sum().sum()
total_reciepts5 = df3[df3['dyear'] >= (row['dyear'] + delta_year+3)][["CONTI_R", "SCHMNTCGRANT_R", "TLM_R"]].sum().sum()
total_expenditure = df3[["CONTI_E", "FUNDS_E", "SCHMNTCGRANT_E", "TLM_GRANT_EXPND"]].sum().sum()
total_expenditure1 = df3[df3['dyear'] == (row['dyear'] + delta_year-1)][["CONTI_E", "FUNDS_E", "SCHMNTCGRANT_E", "TLM_GRANT_EXPND"]].sum().sum()
total_expenditure2 = df3[df3['dyear'] == (row['dyear'] + delta_year+0)][["CONTI_E", "FUNDS_E", "SCHMNTCGRANT_E", "TLM_GRANT_EXPND"]].sum().sum()
total_expenditure3 = df3[df3['dyear'] == (row['dyear'] + delta_year+1)][["CONTI_E", "FUNDS_E", "SCHMNTCGRANT_E", "TLM_GRANT_EXPND"]].sum().sum()
total_expenditure4 = df3[df3['dyear'] == (row['dyear'] + delta_year+2)][["CONTI_E", "FUNDS_E", "SCHMNTCGRANT_E", "TLM_GRANT_EXPND"]].sum().sum()
total_expenditure5 = df3[df3['dyear'] >= (row['dyear'] + delta_year+3)][["CONTI_E", "FUNDS_E", "SCHMNTCGRANT_E", "TLM_GRANT_EXPND"]].sum().sum()
df4 = df3[df3['SCHMGT'].isin([1, 2])]
state_govt_schools_opened = df4[(df4['ESTDYEAR'] >= row['dyear']) & (df4['ESTDYEAR'] < next_elect['dyear'].values[0])].shape[0]
state_govt_schools_opened1 = df4[df4['ESTDYEAR'] == (row['dyear'] + delta_year-1)].shape[0]
state_govt_schools_opened2 = df4[df4['ESTDYEAR'] == (row['dyear'] + delta_year+0)].shape[0]
state_govt_schools_opened3 = df4[df4['ESTDYEAR'] == (row['dyear'] + delta_year+0)].shape[0]
state_govt_schools_opened4 = df4[df4['ESTDYEAR'] == (row['dyear'] + delta_year+2)].shape[0]
state_govt_schools_opened5 = df4[df4['ESTDYEAR'] >= (row['dyear'] + delta_year+3)].shape[0]
state_govt_funds = df4["FUNDS_R"].sum()
state_govt_funds1 = df4[df4['dyear'] == (row['dyear'] + delta_year-1)]["FUNDS_R"].sum()
state_govt_funds2 = df4[df4['dyear'] == (row['dyear'] + delta_year+0)]["FUNDS_R"].sum()
state_govt_funds3 = df4[df4['dyear'] == (row['dyear'] + delta_year+1)]["FUNDS_R"].sum()
state_govt_funds4 = df4[df4['dyear'] == (row['dyear'] + delta_year+2)]["FUNDS_R"].sum()
state_govt_funds5 = df4[df4['dyear'] >= (row['dyear'] + delta_year+3)]["FUNDS_R"].sum()
state_govt_reciepts = df4[["CONTI_R", "SCHMNTCGRANT_R", "TLM_R"]].sum().sum()
state_govt_reciepts1 = df4[df4['dyear'] == (row['dyear'] + delta_year-1)][["CONTI_R", "SCHMNTCGRANT_R", "TLM_R"]].sum().sum()
state_govt_reciepts2 = df4[df4['dyear'] == (row['dyear'] + delta_year+0)][["CONTI_R", "SCHMNTCGRANT_R", "TLM_R"]].sum().sum()
state_govt_reciepts3 = df4[df4['dyear'] == (row['dyear'] + delta_year+1)][["CONTI_R", "SCHMNTCGRANT_R", "TLM_R"]].sum().sum()
state_govt_reciepts4 = df4[df4['dyear'] == (row['dyear'] + delta_year+2)][["CONTI_R", "SCHMNTCGRANT_R", "TLM_R"]].sum().sum()
state_govt_reciepts5 = df4[df4['dyear'] >= (row['dyear'] + delta_year+3)][["CONTI_R", "SCHMNTCGRANT_R", "TLM_R"]].sum().sum()
state_govt_expenditure = df4[["CONTI_E", "FUNDS_E", "SCHMNTCGRANT_E", "TLM_GRANT_EXPND"]].sum().sum()
state_govt_expenditure1 = df4[df4['dyear'] == (row['dyear'] + delta_year-1)][["CONTI_E", "FUNDS_E", "SCHMNTCGRANT_E", "TLM_GRANT_EXPND"]].sum().sum()
state_govt_expenditure2 = df4[df4['dyear'] == (row['dyear'] + delta_year+0)][["CONTI_E", "FUNDS_E", "SCHMNTCGRANT_E", "TLM_GRANT_EXPND"]].sum().sum()
state_govt_expenditure3 = df4[df4['dyear'] == (row['dyear'] + delta_year+1)][["CONTI_E", "FUNDS_E", "SCHMNTCGRANT_E", "TLM_GRANT_EXPND"]].sum().sum()
state_govt_expenditure4 = df4[df4['dyear'] == (row['dyear'] + delta_year+2)][["CONTI_E", "FUNDS_E", "SCHMNTCGRANT_E", "TLM_GRANT_EXPND"]].sum().sum()
state_govt_expenditure5 = df4[df4['dyear'] >= (row['dyear'] + delta_year+3)][["CONTI_E", "FUNDS_E", "SCHMNTCGRANT_E", "TLM_GRANT_EXPND"]].sum().sum()
df5 = df3[df3['SCHMGT'].isin([3])]
local_govt_schools_opened = df5[(df5['ESTDYEAR'] >= row['dyear']) & (df4['ESTDYEAR'] < next_elect['dyear'].values[0])].shape[0]
local_govt_schools_opened1 = df5[df5['ESTDYEAR'] == (row['dyear'] + delta_year-1)].shape[0]
local_govt_schools_opened2 = df5[df5['ESTDYEAR'] == (row['dyear'] + delta_year+0)].shape[0]
local_govt_schools_opened3 = df5[df5['ESTDYEAR'] == (row['dyear'] + delta_year+0)].shape[0]
local_govt_schools_opened4 = df5[df5['ESTDYEAR'] == (row['dyear'] + delta_year+2)].shape[0]
local_govt_schools_opened5 = df5[df5['ESTDYEAR'] >= (row['dyear'] + delta_year+3)].shape[0]
local_govt_funds = df5["FUNDS_R"].sum()
local_govt_funds1 = df5[df5['dyear'] == (row['dyear'] + delta_year-1)]["FUNDS_R"].sum()
local_govt_funds2 = df5[df5['dyear'] == (row['dyear'] + delta_year+0)]["FUNDS_R"].sum()
local_govt_funds3 = df5[df5['dyear'] == (row['dyear'] + delta_year+1)]["FUNDS_R"].sum()
local_govt_funds4 = df5[df5['dyear'] == (row['dyear'] + delta_year+2)]["FUNDS_R"].sum()
local_govt_funds5 = df5[df5['dyear'] >= (row['dyear'] + delta_year+3)]["FUNDS_R"].sum()
local_govt_reciepts = df5[["CONTI_R", "SCHMNTCGRANT_R", "TLM_R"]].sum().sum()
local_govt_reciepts1 = df5[df5['dyear'] == (row['dyear'] + delta_year-1)][["CONTI_R", "SCHMNTCGRANT_R", "TLM_R"]].sum().sum()
local_govt_reciepts2 = df5[df5['dyear'] == (row['dyear'] + delta_year+0)][["CONTI_R", "SCHMNTCGRANT_R", "TLM_R"]].sum().sum()
local_govt_reciepts3 = df5[df5['dyear'] == (row['dyear'] + delta_year+1)][["CONTI_R", "SCHMNTCGRANT_R", "TLM_R"]].sum().sum()
local_govt_reciepts4 = df5[df5['dyear'] == (row['dyear'] + delta_year+2)][["CONTI_R", "SCHMNTCGRANT_R", "TLM_R"]].sum().sum()
local_govt_reciepts5 = df5[df5['dyear'] >= (row['dyear'] + delta_year+3)][["CONTI_R", "SCHMNTCGRANT_R", "TLM_R"]].sum().sum()
local_govt_expenditure = df5[["CONTI_E", "FUNDS_E", "SCHMNTCGRANT_E", "TLM_GRANT_EXPND"]].sum().sum()
local_govt_expenditure1 = df5[df5['dyear'] == (row['dyear'] + delta_year-1)][["CONTI_E", "FUNDS_E", "SCHMNTCGRANT_E", "TLM_GRANT_EXPND"]].sum().sum()
local_govt_expenditure2 = df5[df5['dyear'] == (row['dyear'] + delta_year+0)][["CONTI_E", "FUNDS_E", "SCHMNTCGRANT_E", "TLM_GRANT_EXPND"]].sum().sum()
local_govt_expenditure3 = df5[df5['dyear'] == (row['dyear'] + delta_year+1)][["CONTI_E", "FUNDS_E", "SCHMNTCGRANT_E", "TLM_GRANT_EXPND"]].sum().sum()
local_govt_expenditure4 = df5[df5['dyear'] == (row['dyear'] + delta_year+2)][["CONTI_E", "FUNDS_E", "SCHMNTCGRANT_E", "TLM_GRANT_EXPND"]].sum().sum()
local_govt_expenditure5 = df5[df5['dyear'] >= (row['dyear'] + delta_year+3)][["CONTI_E", "FUNDS_E", "SCHMNTCGRANT_E", "TLM_GRANT_EXPND"]].sum().sum()
df6 = df3[df3['SCHMGT'].isin([4, 5])]
private_schools_opened = df6[(df6['ESTDYEAR'] >= row['dyear']) & (df4['ESTDYEAR'] < next_elect['dyear'].values[0])].shape[0]
private_schools_opened1 = df6[df6['ESTDYEAR'] == (row['dyear'] + delta_year-1)].shape[0]
private_schools_opened2 = df6[df6['ESTDYEAR'] == (row['dyear'] + delta_year+0)].shape[0]
private_schools_opened3 = df6[df6['ESTDYEAR'] == (row['dyear'] + delta_year+0)].shape[0]
private_schools_opened4 = df6[df6['ESTDYEAR'] == (row['dyear'] + delta_year+2)].shape[0]
private_schools_opened5 = df6[df6['ESTDYEAR'] >= (row['dyear'] + delta_year+3)].shape[0]
private_funds = df6["FUNDS_R"].sum()
private_funds1 = df6[df6['dyear'] == (row['dyear'] + delta_year-1)]["FUNDS_R"].sum()
private_funds2 = df6[df6['dyear'] == (row['dyear'] + delta_year+0)]["FUNDS_R"].sum()
private_funds3 = df6[df6['dyear'] == (row['dyear'] + delta_year+1)]["FUNDS_R"].sum()
private_funds4 = df6[df6['dyear'] == (row['dyear'] + delta_year+2)]["FUNDS_R"].sum()
private_funds5 = df6[df6['dyear'] >= (row['dyear'] + delta_year+3)]["FUNDS_R"].sum()
private_reciepts = df6[["CONTI_R", "SCHMNTCGRANT_R", "TLM_R"]].sum().sum()
private_reciepts1 = df6[df6['dyear'] == (row['dyear'] + delta_year-1)][["CONTI_R", "SCHMNTCGRANT_R", "TLM_R"]].sum().sum()
private_reciepts2 = df6[df6['dyear'] == (row['dyear'] + delta_year+0)][["CONTI_R", "SCHMNTCGRANT_R", "TLM_R"]].sum().sum()
private_reciepts3 = df6[df6['dyear'] == (row['dyear'] + delta_year+1)][["CONTI_R", "SCHMNTCGRANT_R", "TLM_R"]].sum().sum()
private_reciepts4 = df6[df6['dyear'] == (row['dyear'] + delta_year+2)][["CONTI_R", "SCHMNTCGRANT_R", "TLM_R"]].sum().sum()
private_reciepts5 = df6[df6['dyear'] >= (row['dyear'] + delta_year+3)][["CONTI_R", "SCHMNTCGRANT_R", "TLM_R"]].sum().sum()
private_expenditure = df6[["CONTI_E", "FUNDS_E", "SCHMNTCGRANT_E", "TLM_GRANT_EXPND"]].sum().sum()
private_expenditure1 = df6[df6['dyear'] == (row['dyear'] + delta_year-1)][["CONTI_E", "FUNDS_E", "SCHMNTCGRANT_E", "TLM_GRANT_EXPND"]].sum().sum()
private_expenditure2 = df6[df6['dyear'] == (row['dyear'] + delta_year+0)][["CONTI_E", "FUNDS_E", "SCHMNTCGRANT_E", "TLM_GRANT_EXPND"]].sum().sum()
private_expenditure3 = df6[df6['dyear'] == (row['dyear'] + delta_year+1)][["CONTI_E", "FUNDS_E", "SCHMNTCGRANT_E", "TLM_GRANT_EXPND"]].sum().sum()
private_expenditure4 = df6[df6['dyear'] == (row['dyear'] + delta_year+2)][["CONTI_E", "FUNDS_E", "SCHMNTCGRANT_E", "TLM_GRANT_EXPND"]].sum().sum()
private_expenditure5 = df6[df6['dyear'] >= (row['dyear'] + delta_year+3)][["CONTI_E", "FUNDS_E", "SCHMNTCGRANT_E", "TLM_GRANT_EXPND"]].sum().sum()
#Return Now
return total_school,total_school1,total_school2,total_school3,total_school4,total_school5,state_govt_school, state_govt_school1,state_govt_school2,state_govt_school3,state_govt_school4,state_govt_school5,local_govt_school,local_govt_school1,local_govt_school2,local_govt_school3,local_govt_school4,local_govt_school5,local_govt_school5,private_school,private_school1,private_school2,private_school3,private_school4,private_school5,schools_opened,schools_opened1,schools_opened2,schools_opened3,schools_opened4,schools_opened5,state_govt_schools_opened,state_govt_schools_opened1,state_govt_schools_opened2,state_govt_schools_opened3,state_govt_schools_opened4,state_govt_schools_opened5,local_govt_schools_opened,local_govt_schools_opened1,local_govt_schools_opened2,local_govt_schools_opened3,local_govt_schools_opened4,local_govt_schools_opened5,private_schools_opened,private_schools_opened1,private_schools_opened2,private_schools_opened3,private_schools_opened4,private_schools_opened5,state_govt_funds,state_govt_funds1,state_govt_funds2,state_govt_funds3,state_govt_funds4,state_govt_funds5,state_govt_reciepts,state_govt_reciepts1,state_govt_reciepts2,state_govt_reciepts3,state_govt_reciepts4,state_govt_reciepts5,state_govt_expenditure,state_govt_expenditure1,state_govt_expenditure2,state_govt_expenditure3,state_govt_expenditure4,state_govt_expenditure5,local_govt_funds,local_govt_funds1,local_govt_funds2,local_govt_funds3,local_govt_funds4,local_govt_funds5,local_govt_reciepts,local_govt_reciepts1,local_govt_reciepts2,local_govt_reciepts3,local_govt_reciepts4,local_govt_reciepts5,local_govt_expenditure,local_govt_expenditure1,local_govt_expenditure2,local_govt_expenditure3,local_govt_expenditure4,local_govt_expenditure5,private_funds,private_funds1,private_funds2,private_funds3,private_funds4,private_funds5,private_reciepts,private_reciepts1,private_reciepts2,private_reciepts3,private_reciepts4,private_reciepts5,private_expenditure,private_expenditure1,private_expenditure2,private_expenditure3,private_expenditure4,private_expenditure5,total_funds,total_funds1,total_funds2,total_funds3,total_funds4,total_funds5,total_reciepts,total_reciepts1,total_reciepts2,total_reciepts3,total_reciepts4,total_reciepts5,total_expenditure,total_expenditure1,total_expenditure2,total_expenditure3,total_expenditure4,total_expenditure5
except:
return 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
#Apply This Function
acdf[variables] = acdf.apply(get_ac_variables, axis=1, result_type='expand')
#acdf.head(50).apply(get_ac_variables, axis=1, result_type='expand')
acdf