# Import Librariesa
import pandas as pd
import geopandas as gpd
import lxml
import os
import glob
import time
import datetime
import json
import math
# Set Output Folder
output_folder = os.path.abspath("output")
if not os.path.exists(output_folder):
os.makedirs(output_folder)
# Import data folders
data_folder = os.path.abspath("data")
download_folder = os.path.join(data_folder, "Downloaded")
folders = os.listdir(data_folder)
## Make Noise
print("data found for these themes:")
i = 0
for folder in folders:
print(i,") ",folder)
i+=1
data found for these themes: 0 ) Data User_2011_12 1 ) Data User_2011_12.zip 2 ) Data User_2012_13 3 ) Data User_2012_13.zip 4 ) Data User_2013_14 5 ) Data User_2013_14.zip 6 ) Data User_2014_15 7 ) Data User_2014_15.zip 8 ) Data User_2015_16 9 ) Data User_2015_16.zip 10 ) Data User_2016_17 11 ) Data User_2016_17.zip 12 ) Data User_2017_18 13 ) Data User_2017_18.zip 14 ) Downloaded
# Read Constituency Data
ac_gdf = None
ac_filepath = os.path.join(data_folder, "Downloaded", "AC", "India_AC.shp")
ac_gdf = gpd.read_file(ac_filepath)
ac_gdf
# Read Constituency Data
ac_file = os.path.join(data_folder, "General_Later_Ashoka_alldata.csv")
acdf = pd.read_csv(ac_file)
acdf['state_name'] = acdf['state_name'].str.replace("_", " ")
#acdf = acdf[['state_name', 'constituency_no', 'constituency_name', 'year', 'month']]
acdf = acdf.drop_duplicates(subset=None, keep="first", inplace=False).reset_index(drop=True)
acdf.loc[acdf['newstate_code'] == 36, 'newstate_code'] = 28 #Telangana Fix
acdf = acdf[['state_name', 'state_code', 'constituency_no', 'year', 'month']]
acdf['day'] = 1
acdf['datetime'] = pd.to_datetime(acdf[['year', 'month', 'day']])
acdf = acdf.drop_duplicates().reset_index(drop=True)
acdf = pd.merge(acdf, ac_gdf, how='inner', left_on=['state_code', 'constituency_no'], right_on = ['ST_CODE','AC_NO'])#[['ST_CODE', 'ST_NAME','DT_CODE', 'DIST_NAME', 'AC_NO', 'AC_NAME', 'PC_NO', 'PC_NAME']]
acdf = acdf[acdf.columns[:-4]]
acdf
--------------------------------------------------------------------------- FileNotFoundError Traceback (most recent call last) <ipython-input-5-3f97d095d03e> in <module>() 7 # Read Constituency Data 8 ac_file = os.path.join(data_folder, "General_Later_Ashoka_alldata.csv") ----> 9 acdf = pd.read_csv(ac_file) 10 acdf['state_name'] = acdf['state_name'].str.replace("_", " ") 11 #acdf = acdf[['state_name', 'constituency_no', 'constituency_name', 'year', 'month']] ~\AppData\Local\conda\conda\envs\geo\lib\site-packages\pandas\io\parsers.py in parser_f(filepath_or_buffer, sep, delimiter, header, names, index_col, usecols, squeeze, prefix, mangle_dupe_cols, dtype, engine, converters, true_values, false_values, skipinitialspace, skiprows, nrows, na_values, keep_default_na, na_filter, verbose, skip_blank_lines, parse_dates, infer_datetime_format, keep_date_col, date_parser, dayfirst, iterator, chunksize, compression, thousands, decimal, lineterminator, quotechar, quoting, escapechar, comment, encoding, dialect, tupleize_cols, error_bad_lines, warn_bad_lines, skipfooter, doublequote, delim_whitespace, low_memory, memory_map, float_precision) 676 skip_blank_lines=skip_blank_lines) 677 --> 678 return _read(filepath_or_buffer, kwds) 679 680 parser_f.__name__ = name ~\AppData\Local\conda\conda\envs\geo\lib\site-packages\pandas\io\parsers.py in _read(filepath_or_buffer, kwds) 438 439 # Create the parser. --> 440 parser = TextFileReader(filepath_or_buffer, **kwds) 441 442 if chunksize or iterator: ~\AppData\Local\conda\conda\envs\geo\lib\site-packages\pandas\io\parsers.py in __init__(self, f, engine, **kwds) 785 self.options['has_index_names'] = kwds['has_index_names'] 786 --> 787 self._make_engine(self.engine) 788 789 def close(self): ~\AppData\Local\conda\conda\envs\geo\lib\site-packages\pandas\io\parsers.py in _make_engine(self, engine) 1012 def _make_engine(self, engine='c'): 1013 if engine == 'c': -> 1014 self._engine = CParserWrapper(self.f, **self.options) 1015 else: 1016 if engine == 'python': ~\AppData\Local\conda\conda\envs\geo\lib\site-packages\pandas\io\parsers.py in __init__(self, src, **kwds) 1706 kwds['usecols'] = self.usecols 1707 -> 1708 self._reader = parsers.TextReader(src, **kwds) 1709 1710 passed_names = self.names is None pandas/_libs/parsers.pyx in pandas._libs.parsers.TextReader.__cinit__() pandas/_libs/parsers.pyx in pandas._libs.parsers.TextReader._setup_parser_source() FileNotFoundError: File b'E:\\workspace\\sourav sarkar\\Task 18 - Join new AISHE data\\data\\General_Later_Ashoka_alldata.csv' does not exist
# Colleges data
## Read General data
year_data_folder = os.path.join(data_folder, "Data User_2016_17")
college = os.path.join(year_data_folder, "college.csv")
cdf = pd.read_csv(college)
cdf
## Read Institution data
college_institution = os.path.join(year_data_folder, "college_institution.csv")
cidf = pd.read_csv(college_institution)
cidf
## Read Geocoded data
geocoded_data_folder = os.path.join(data_folder, "Geocoded")
Colleges_geocoded = os.path.join(geocoded_data_folder, "Colleges_geocoded.shp.csv")
cgdf = pd.read_csv(Colleges_geocoded)
cgdf
## merge data
colleges_merge_df = pd.merge(cgdf, cdf, on=['id'], how='inner')
colleges_merge_df = pd.merge(colleges_merge_df, cidf, on=['id'], how='inner')
## create Datetime Column
colleges_merge_df['year'] = colleges_merge_df['year_of_establishment'].astype(float).fillna(0.0).astype(int)
colleges_merge_df = colleges_merge_df[colleges_merge_df['year'] > 2000]
colleges_merge_df['month'] = 9
colleges_merge_df['day'] = 30
colleges_merge_df['datetime'] = pd.to_datetime(colleges_merge_df[['year', 'month', 'day']])
colleges_merge_df
C:\Users\sandyjones\AppData\Local\conda\conda\envs\geo\lib\site-packages\IPython\core\interactiveshell.py:2785: DtypeWarning: Columns (37,38,39,40,44,45,49) have mixed types. Specify dtype option on import or set low_memory=False. interactivity=interactivity, compiler=compiler, result=result)
id | latitude_x | longitude_x | geometry | index_right | OBJECTID | ST_CODE | ST_NAME | DT_CODE | DIST_NAME | ... | pin_code | has_fellowships | fellowships_id | other_affiliated_university_id | has_other_minority_data | block_city_town | year | month | day | datetime | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 29888 | 27.030001 | 93.900001 | POINT (93.900001 27.030001) | 83 | 9 | 18 | ASSAM | 12.0 | LAKHIMPUR | ... | 453331 | False | NaN | NaN | False | NaN | 2011 | 9 | 30 | 2011-09-30 |
2 | 25724 | 27.030010 | 93.900010 | POINT (93.90000999999999 27.03001) | 83 | 9 | 18 | ASSAM | 12.0 | LAKHIMPUR | ... | 500110 | False | NaN | NaN | False | NaN | 2001 | 9 | 30 | 2001-09-30 |
4 | 1132 | 16.450001 | 74.310001 | POINT (74.310001 16.450001) | 2943 | 47 | 27 | MAHARASHTRA | 34.0 | KOLHAPUR | ... | 395008 | False | NaN | NaN | False | NaN | 2003 | 9 | 30 | 2003-09-30 |
6 | 19228 | 16.513010 | 74.174310 | POINT (74.17431000000001 16.51301) | 2943 | 47 | 27 | MAHARASHTRA | 34.0 | KOLHAPUR | ... | 470004 | False | NaN | NaN | False | NaN | 2005 | 9 | 30 | 2005-09-30 |
7 | 14686 | 16.420120 | 74.141230 | POINT (74.14122999999999 16.42012) | 2943 | 47 | 27 | MAHARASHTRA | 34.0 | KOLHAPUR | ... | 639117 | False | NaN | NaN | False | NaN | 2007 | 9 | 30 | 2007-09-30 |
8 | 15944 | 16.222321 | 74.347365 | POINT (74.34736499999998 16.222321) | 2943 | 47 | 27 | MAHARASHTRA | 34.0 | KOLHAPUR | ... | 276121 | False | NaN | NaN | False | NaN | 2004 | 9 | 30 | 2004-09-30 |
11 | 19618 | 16.452167 | 74.300181 | POINT (74.30018099999998 16.452167) | 2943 | 47 | 27 | MAHARASHTRA | 34.0 | KOLHAPUR | ... | 506003 | False | NaN | NaN | False | NaN | 2008 | 9 | 30 | 2008-09-30 |
13 | 27508 | 16.267350 | 74.348290 | POINT (74.34829000000001 16.26735) | 2943 | 47 | 27 | MAHARASHTRA | 34.0 | KOLHAPUR | ... | 506001 | False | NaN | NaN | False | NaN | 2003 | 9 | 30 | 2003-09-30 |
24 | 36722 | 29.200478 | 74.781897 | POINT (74.78189740000001 29.2004785) | 3417 | 3 | 8 | RAJASTHAN | 2.0 | HANUMANGARH * | ... | 335523 | False | NaN | NaN | True | NaN | 2006 | 9 | 30 | 2006-09-30 |
25 | 36758 | 29.294451 | 74.571958 | POINT (74.5719579 29.2944507) | 3417 | 3 | 8 | RAJASTHAN | 2.0 | HANUMANGARH * | ... | 335524 | False | NaN | NaN | False | NaN | 2011 | 9 | 30 | 2011-09-30 |
26 | 36857 | 29.324314 | 74.897236 | POINT (74.89723640000001 29.3243141) | 3417 | 3 | 8 | RAJASTHAN | 2.0 | HANUMANGARH * | ... | 335523 | False | NaN | 0790 | True | NaN | 2007 | 9 | 30 | 2007-09-30 |
27 | 36869 | 28.944968 | 74.217647 | POINT (74.2176475 28.9449682) | 3417 | 3 | 8 | RAJASTHAN | 2.0 | HANUMANGARH * | ... | 335524 | False | NaN | NaN | False | NaN | 2008 | 9 | 30 | 2008-09-30 |
28 | 36886 | 29.244420 | 74.519548 | POINT (74.5195485 29.24442) | 3417 | 3 | 8 | RAJASTHAN | 2.0 | HANUMANGARH * | ... | 335524 | False | NaN | NaN | False | NaN | 2011 | 9 | 30 | 2011-09-30 |
29 | 36892 | 28.930222 | 74.209128 | POINT (74.20912800000001 28.9302218) | 3417 | 3 | 8 | RAJASTHAN | 2.0 | HANUMANGARH * | ... | 335524 | False | NaN | NaN | True | NaN | 2008 | 9 | 30 | 2008-09-30 |
30 | 40663 | 29.185556 | 74.770465 | POINT (74.7704653 29.1855559) | 3417 | 3 | 8 | RAJASTHAN | 2.0 | HANUMANGARH * | ... | 335523 | False | NaN | NaN | False | NaN | 2011 | 9 | 30 | 2011-09-30 |
31 | 40671 | 29.179889 | 74.772101 | POINT (74.77210059999999 29.1798889) | 3417 | 3 | 8 | RAJASTHAN | 2.0 | HANUMANGARH * | ... | 335523 | False | NaN | 0761 | True | NaN | 2003 | 9 | 30 | 2003-09-30 |
32 | 51591 | 29.292240 | 74.565459 | POINT (74.56545899999999 29.29224) | 3417 | 3 | 8 | RAJASTHAN | 2.0 | HANUMANGARH * | ... | 335524 | False | NaN | NaN | True | NaN | 2012 | 9 | 30 | 2012-09-30 |
34 | 14728 | 9.543693 | 78.591534 | POINT (78.59153430000001 9.543692500000001) | 645 | 35 | 33 | TAMIL NADU | 27.0 | RAMANATHAPURAM | ... | 623707 | False | NaN | NaN | True | NaN | 2008 | 9 | 30 | 2008-09-30 |
38 | 17994 | 10.568950 | 76.254890 | POINT (76.25489 10.56895) | 366 | 10 | 32 | KERALA | 7.0 | THRISSUR | ... | 522213 | False | NaN | NaN | False | NaN | 2006 | 9 | 30 | 2006-09-30 |
39 | 32638 | 10.553110 | 76.226910 | POINT (76.22691 10.55311) | 366 | 10 | 32 | KERALA | 7.0 | THRISSUR | ... | 522646 | False | NaN | NaN | False | NaN | 2002 | 9 | 30 | 2002-09-30 |
40 | 30217 | 10.500420 | 76.211518 | POINT (76.21151759999999 10.5004199) | 366 | 10 | 32 | KERALA | 7.0 | THRISSUR | ... | 516329 | False | NaN | NaN | False | NaN | 2006 | 9 | 30 | 2006-09-30 |
42 | 51782 | 10.566073 | 76.245857 | POINT (76.2458575 10.5660734) | 366 | 10 | 32 | KERALA | 7.0 | THRISSUR | ... | 680028 | False | NaN | NaN | False | NaN | 2014 | 9 | 30 | 2014-09-30 |
46 | 8279 | 10.537122 | 76.196638 | POINT (76.19663800000001 10.537122) | 366 | 10 | 32 | KERALA | 7.0 | THRISSUR | ... | 680581 | False | NaN | NaN | False | NaN | 2002 | 9 | 30 | 2002-09-30 |
47 | 43331 | 10.521003 | 76.226776 | POINT (76.226776 10.521003) | 366 | 10 | 32 | KERALA | 7.0 | THRISSUR | ... | 680005 | False | NaN | 0761 | True | NaN | 2003 | 9 | 30 | 2003-09-30 |
48 | 52126 | 10.519263 | 76.185279 | POINT (76.1852791 10.5192632) | 366 | 10 | 32 | KERALA | 7.0 | THRISSUR | ... | 680012 | False | NaN | NaN | True | NaN | 2011 | 9 | 30 | 2011-09-30 |
49 | 55797 | 10.562975 | 76.241988 | POINT (76.2419881 10.5629749) | 366 | 10 | 32 | KERALA | 7.0 | THRISSUR | ... | 680631 | False | NaN | NaN | True | NaN | 2016 | 9 | 30 | 2016-09-30 |
52 | 6331 | 21.603177 | 71.222083 | POINT (71.222083 21.603177) | 1895 | 14 | 24 | GUJARAT | 13.0 | AMRELI | ... | 700114 | False | NaN | 0590 | False | NaN | 2003 | 9 | 30 | 2003-09-30 |
53 | 7118 | 21.602871 | 71.218170 | POINT (71.21817 21.602871) | 1895 | 14 | 24 | GUJARAT | 13.0 | AMRELI | ... | 741155 | False | NaN | NaN | False | NaN | 2008 | 9 | 30 | 2008-09-30 |
55 | 866 | 21.589182 | 71.221602 | POINT (71.2216016 21.5891818) | 1895 | 14 | 24 | GUJARAT | 13.0 | AMRELI | ... | 365601 | False | NaN | NaN | False | NaN | 2002 | 9 | 30 | 2002-09-30 |
58 | 997 | 21.587991 | 71.223432 | POINT (71.22343190000001 21.5879911) | 1895 | 14 | 24 | GUJARAT | 13.0 | AMRELI | ... | 365601 | False | NaN | NaN | False | NaN | 2001 | 9 | 30 | 2001-09-30 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
26075 | 48459 | 11.224637 | 76.255278 | POINT (76.25527840000001 11.2246368) | 334 | 4 | 32 | KERALA | 5.0 | MALAPPURAM | ... | 679339 | False | NaN | NaN | False | NaN | 2013 | 9 | 30 | 2013-09-30 |
26076 | 50868 | 11.208118 | 76.228672 | POINT (76.2286723 11.2081181) | 334 | 4 | 32 | KERALA | 5.0 | MALAPPURAM | ... | 679328 | False | NaN | NaN | False | NaN | 2014 | 9 | 30 | 2014-09-30 |
26077 | 48473 | 33.629493 | 74.270994 | POINT (74.27099390000001 33.6294927) | 241 | 6 | 1 | JAMMU & KASHMIR | 11.0 | PUNCH | ... | 185121 | False | NaN | NaN | True | NaN | 2011 | 9 | 30 | 2011-09-30 |
26078 | 48529 | 33.647416 | 75.009635 | POINT (75.00963540000001 33.6474161) | 251 | 3 | 1 | JAMMU & KASHMIR | 6.0 | ANANTNAG | ... | 192233 | False | NaN | NaN | False | NaN | 2011 | 9 | 30 | 2011-09-30 |
26079 | 48773 | 33.037685 | 74.485495 | POINT (74.4854945 33.0376847) | 266 | 6 | 1 | JAMMU & KASHMIR | 12.0 | RAJAURI | ... | 185153 | False | NaN | 0196 | False | NaN | 2011 | 9 | 30 | 2011-09-30 |
26080 | 48962 | 27.494258 | 80.972913 | POINT (80.97291290000001 27.4942584) | 3914 | 30 | 9 | UTTAR PRADESH | 24.0 | SITAPUR | ... | 261201 | False | NaN | NaN | False | NaN | 2013 | 9 | 30 | 2013-09-30 |
26081 | 48965 | 27.552364 | 81.223458 | POINT (81.22345770000001 27.552364) | 3911 | 30 | 9 | UTTAR PRADESH | 24.0 | SITAPUR | ... | 261205 | False | NaN | NaN | False | NaN | 2013 | 9 | 30 | 2013-09-30 |
26082 | 49125 | 25.588930 | 84.741499 | POINT (84.74149940000001 25.5889298) | 1464 | 32 | 10 | BIHAR | 29.0 | BHOJPUR | ... | 802314 | False | NaN | NaN | False | NaN | 2010 | 9 | 30 | 2010-09-30 |
26083 | 49362 | 26.851585 | 83.713230 | POINT (83.71323000000001 26.8515848) | 4005 | 65 | 9 | UTTAR PRADESH | 59.0 | KUSHINAGAR * | ... | 274305 | False | NaN | NaN | False | NaN | 2012 | 9 | 30 | 2012-09-30 |
26084 | 49558 | 25.410338 | 86.195746 | POINT (86.195746 25.410338) | 1498 | 24 | 10 | BIHAR | 20.0 | BEGUSARAI | ... | 851129 | False | NaN | 0434 | False | NaN | 2013 | 9 | 30 | 2013-09-30 |
26085 | 55747 | 25.428148 | 86.103985 | POINT (86.10398480000001 25.4281485) | 1498 | 24 | 10 | BIHAR | 20.0 | BEGUSARAI | ... | 851218 | False | NaN | NaN | False | NaN | 2016 | 9 | 30 | 2016-09-30 |
26086 | 49556 | 26.313298 | 87.243293 | POINT (87.24329329999999 26.3132984) | 1352 | 9 | 10 | BIHAR | 7.0 | ARARIA | ... | 854318 | False | NaN | NaN | False | NaN | 2014 | 9 | 30 | 2014-09-30 |
26087 | 50710 | 15.307222 | 73.964269 | POINT (73.96426940000001 15.3072215) | 1758 | 2 | 30 | GOA | 2.0 | SOUTH GOA | ... | 403720 | False | NaN | NaN | False | NaN | 2014 | 9 | 30 | 2014-09-30 |
26089 | 51294 | 30.887896 | 75.870098 | POINT (75.870098 30.8878956) | 3359 | 7 | 3 | PUNJAB | 9.0 | LUDHIANA | ... | 141401 | False | NaN | NaN | True | NaN | 2011 | 9 | 30 | 2011-09-30 |
26090 | 51437 | 28.009100 | 79.683900 | POINT (79.68389999999999 28.0091) | 3870 | 27 | 9 | UTTAR PRADESH | 22.0 | SHAHJAHANPUR | ... | 242001 | False | NaN | NaN | False | NaN | 2013 | 9 | 30 | 2013-09-30 |
26091 | 51568 | 23.779022 | 91.303017 | POINT (91.30301709999999 23.7790221) | 3684 | 1 | 16 | TRIPURA | 1.0 | WEST TRIPURA | ... | 799004 | True | 8381.0 | NaN | False | NaN | 2014 | 9 | 30 | 2014-09-30 |
26092 | 52243 | 32.642498 | 74.903025 | POINT (74.90302459999999 32.6424982) | 289 | 6 | 1 | JAMMU & KASHMIR | 13.0 | JAMMU | ... | 181133 | False | NaN | NaN | True | NaN | 2008 | 9 | 30 | 2008-09-30 |
26093 | 52309 | 25.111231 | 83.621573 | POINT (83.621573 25.111231) | 1535 | 34 | 10 | BIHAR | 31.0 | KAIMUR (BHABUA) * | ... | 821109 | False | NaN | NaN | False | NaN | 2013 | 9 | 30 | 2013-09-30 |
26094 | 53035 | 27.517872 | 82.408938 | POINT (82.4089378 27.5178722) | 3901 | 58 | 9 | UTTAR PRADESH | 52.0 | BALRAMPUR * | ... | 271208 | True | 8789.0 | 0848 | False | NaN | 2012 | 9 | 30 | 2012-09-30 |
26095 | 53107 | 22.921156 | 73.842641 | POINT (73.8426415 22.921156) | 1824 | 18 | 24 | GUJARAT | 17.0 | PANCH MAHALS | ... | 389115 | False | NaN | NaN | False | NaN | 2015 | 9 | 30 | 2015-09-30 |
26097 | 54172 | 29.537709 | 79.749863 | POINT (79.7498631 29.5377085) | 3760 | 3 | 5 | UTTARKHAND | 9.0 | ALMORA | ... | 263625 | False | NaN | 0045 | False | NaN | 2014 | 9 | 30 | 2014-09-30 |
26098 | 54367 | 21.964179 | 87.480107 | POINT (87.48010749999999 21.964179) | 892 | 34 | 19 | WEST BENGAL | 15.0 | PASCHIM MEDINAPUR | ... | 721445 | False | NaN | NaN | False | NaN | 2015 | 9 | 30 | 2015-09-30 |
26099 | 54448 | 21.870949 | 87.424283 | POINT (87.42428270000001 21.8709491) | 892 | 34 | 19 | WEST BENGAL | 15.0 | PASCHIM MEDINAPUR | ... | 721436 | False | NaN | NaN | False | NaN | 2015 | 9 | 30 | 2015-09-30 |
26100 | 54434 | 28.052335 | 79.405865 | POINT (79.40586450000001 28.0523352) | 3874 | 24 | 9 | UTTAR PRADESH | 19.0 | BUDAUN | ... | 243635 | False | NaN | NaN | False | NaN | 2015 | 9 | 30 | 2015-09-30 |
26101 | 54634 | 32.180276 | 75.925793 | POINT (75.9257928 32.1802761) | 2044 | 1 | 2 | HIMACHAL PRADESH | 2.0 | KANGRA | ... | 176038 | False | NaN | NaN | False | NaN | 2015 | 9 | 30 | 2015-09-30 |
26102 | 54888 | 31.779333 | 77.191435 | POINT (77.1914354 31.779333) | 2052 | 2 | 2 | HIMACHAL PRADESH | 5.0 | MANDI | ... | 175121 | False | NaN | NaN | False | NaN | 2015 | 9 | 30 | 2015-09-30 |
26103 | 55062 | 24.436022 | 88.134851 | POINT (88.1348515 24.4360221) | 732 | 9 | 19 | WEST BENGAL | 7.0 | MURSHIDABAD | ... | 742213 | False | NaN | NaN | False | NaN | 2014 | 9 | 30 | 2014-09-30 |
26104 | 55418 | 26.369225 | 88.324879 | POINT (88.32487929999999 26.3692245) | 701 | 4 | 19 | WEST BENGAL | 4.0 | UTTAR DINAJPUR | ... | 733207 | False | NaN | NaN | True | NaN | 2013 | 9 | 30 | 2013-09-30 |
26105 | 56111 | 22.279130 | 87.422840 | POINT (87.4228401 22.2791301) | 900 | 32 | 19 | WEST BENGAL | 15.0 | PASCHIM MEDINAPUR | ... | 721301 | False | NaN | NaN | False | NaN | 2016 | 9 | 30 | 2016-09-30 |
26106 | 56122 | 22.324798 | 73.183052 | POINT (73.1830521 22.3247981) | 1873 | 20 | 24 | GUJARAT | 19.0 | VADODARA | ... | 384235 | False | NaN | NaN | False | NaN | 2016 | 9 | 30 | 2016-09-30 |
15878 rows × 78 columns
# University data
## Read General data
year_data_folder = os.path.join(data_folder, "Data User_2016_17")
university = os.path.join(year_data_folder, "university.csv")
udf = pd.read_csv(university)
udf
## Read Geocoded data
geocoded_data_folder = os.path.join(data_folder, "Geocoded")
university_geocoded = os.path.join(geocoded_data_folder, "university_geocoded.shp.csv")
ugdf = pd.read_csv(university_geocoded)
ugdf
## merge data
university_merge_df = pd.merge(ugdf, udf, on=['id'], how='inner')
## create Datetime Column
university_merge_df['year'] = university_merge_df['year_of_establishment'].astype(float).fillna(0.0).astype(int)
university_merge_df = university_merge_df[university_merge_df['year'] > 2000]
university_merge_df['month'] = 9
university_merge_df['day'] = 30
university_merge_df['datetime'] = pd.to_datetime(university_merge_df[['year', 'month', 'day']])
university_merge_df
id | latitude_x | longitude_x | geometry | index_right | OBJECTID | ST_CODE | ST_NAME | DT_CODE | DIST_NAME | ... | fellowships_id | has_other_minority_data | block_city_town | is_university_uploaded_act_statues | is_university_complying_rules | is_university180_actual_teaching_days | year | month | day | datetime | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5 | 147 | 23.000000 | 72.000000 | POINT (72 23) | 1801 | 9 | 24 | GUJARAT | 8.0 | SURENDRANAGAR | ... | 8537.0 | True | NaN | NaN | NaN | NaN | 2007 | 9 | 30 | 2007-09-30 |
6 | 147 | 23.146049 | 72.651515 | POINT (72.65151463021385 23.14604890263672) | 1810 | 7 | 24 | GUJARAT | 6.0 | GANDHINAGAR | ... | 8537.0 | True | NaN | NaN | NaN | NaN | 2007 | 9 | 30 | 2007-09-30 |
7 | 594 | 23.000010 | 72.000010 | POINT (72.00001 23.00001) | 1801 | 9 | 24 | GUJARAT | 8.0 | SURENDRANAGAR | ... | NaN | False | NaN | NaN | NaN | NaN | 2009 | 9 | 30 | 2009-09-30 |
8 | 734 | 23.000120 | 72.000310 | POINT (72.00031 23.00012) | 1801 | 9 | 24 | GUJARAT | 8.0 | SURENDRANAGAR | ... | NaN | False | NaN | NaN | NaN | NaN | 2013 | 9 | 30 | 2013-09-30 |
9 | 82 | 19.000000 | 82.000000 | POINT (82 19) | 1656 | 10 | 22 | CHHATTISGARH | 15.0 | BASTER | ... | NaN | True | NaN | NaN | NaN | NaN | 2008 | 9 | 30 | 2008-09-30 |
10 | 82 | 18.863822 | 82.072980 | POINT (82.07297981034584 18.86382162248797) | 1656 | 10 | 22 | CHHATTISGARH | 15.0 | BASTER | ... | NaN | True | NaN | NaN | NaN | NaN | 2008 | 9 | 30 | 2008-09-30 |
13 | 870 | 24.668863 | 73.700119 | POINT (73.7001192 24.6688628) | 3586 | 19 | 8 | RAJASTHAN | 26.0 | UDAIPUR | ... | NaN | False | NaN | NaN | NaN | NaN | 2016 | 9 | 30 | 2016-09-30 |
14 | 706 | 23.584795 | 72.954487 | POINT (72.954487 23.584795) | 1795 | 5 | 24 | GUJARAT | 5.0 | SABAR KANTHA | ... | NaN | False | NaN | NaN | NaN | NaN | 2009 | 9 | 30 | 2009-09-30 |
15 | 706 | 23.237800 | 72.703350 | POINT (72.70335 23.2378) | 1810 | 7 | 24 | GUJARAT | 6.0 | GANDHINAGAR | ... | NaN | False | NaN | NaN | NaN | NaN | 2009 | 9 | 30 | 2009-09-30 |
16 | 430 | 27.338930 | 88.606510 | POINT (88.60651 27.33893) | 3622 | 1 | 11 | SIKKIM | 4.0 | EAST | ... | NaN | True | NaN | NaN | NaN | NaN | 2007 | 9 | 30 | 2007-09-30 |
18 | 420 | 26.801658 | 75.828883 | POINT (75.82888259999999 26.8016582) | 3501 | 7 | 8 | RAJASTHAN | 12.0 | JAIPUR | ... | NaN | False | NaN | NaN | NaN | NaN | 2005 | 9 | 30 | 2005-09-30 |
19 | 401 | 26.850001 | 75.900000 | POINT (75.9000001 26.850001) | 3501 | 7 | 8 | RAJASTHAN | 12.0 | JAIPUR | ... | NaN | True | NaN | NaN | NaN | NaN | 2002 | 9 | 30 | 2002-09-30 |
20 | 607 | 26.779378 | 75.775887 | POINT (75.77588699999998 26.7793779) | 3501 | 7 | 8 | RAJASTHAN | 12.0 | JAIPUR | ... | NaN | False | NaN | NaN | NaN | NaN | 2009 | 9 | 30 | 2009-09-30 |
21 | 607 | 26.744414 | 75.765122 | POINT (75.76512210049169 26.74441350892278) | 3501 | 7 | 8 | RAJASTHAN | 12.0 | JAIPUR | ... | NaN | False | NaN | NaN | NaN | NaN | 2009 | 9 | 30 | 2009-09-30 |
22 | 752 | 26.777560 | 75.845421 | POINT (75.845421 26.77756) | 3501 | 7 | 8 | RAJASTHAN | 12.0 | JAIPUR | ... | NaN | True | NaN | NaN | NaN | NaN | 2012 | 9 | 30 | 2012-09-30 |
23 | 748 | 26.811507 | 75.892244 | POINT (75.89224400000001 26.811507) | 3501 | 7 | 8 | RAJASTHAN | 12.0 | JAIPUR | ... | NaN | True | NaN | NaN | NaN | NaN | 2012 | 9 | 30 | 2012-09-30 |
25 | 799 | 26.844470 | 75.811310 | POINT (75.81131000000001 26.84447) | 3501 | 7 | 8 | RAJASTHAN | 12.0 | JAIPUR | ... | NaN | True | NaN | NaN | NaN | NaN | 2013 | 9 | 30 | 2013-09-30 |
26 | 72 | 25.620589 | 85.171850 | POINT (85.17185000000001 25.620589) | 1478 | 30 | 10 | BIHAR | 28.0 | PATNA | ... | NaN | True | NaN | NaN | NaN | NaN | 2004 | 9 | 30 | 2004-09-30 |
27 | 72 | 25.618470 | 85.168360 | POINT (85.16836000000001 25.61847) | 1478 | 30 | 10 | BIHAR | 28.0 | PATNA | ... | NaN | True | NaN | NaN | NaN | NaN | 2004 | 9 | 30 | 2004-09-30 |
31 | 689 | 26.280010 | 73.020010 | POINT (73.02001 26.28001) | 3521 | 16 | 8 | RAJASTHAN | 15.0 | JODHPUR | ... | NaN | False | NaN | NaN | NaN | NaN | 2012 | 9 | 30 | 2012-09-30 |
32 | 340 | 25.568140 | 91.883382 | POINT (91.88338227 25.5681398) | 3048 | 1 | 17 | MEGHALAYA | 6.0 | EAST KHASI HILLS | ... | 8813.0 | True | NaN | NaN | NaN | NaN | 2005 | 9 | 30 | 2005-09-30 |
33 | 619 | 25.573764 | 91.894167 | POINT (91.894167 25.573764) | 3048 | 1 | 17 | MEGHALAYA | 6.0 | EAST KHASI HILLS | ... | 9402.0 | True | NaN | NaN | NaN | NaN | 2010 | 9 | 30 | 2010-09-30 |
34 | 343 | 25.567454 | 91.899960 | POINT (91.89996020000001 25.5674539) | 3048 | 1 | 17 | MEGHALAYA | 6.0 | EAST KHASI HILLS | ... | NaN | False | NaN | NaN | NaN | NaN | 2005 | 9 | 30 | 2005-09-30 |
37 | 741 | 26.922070 | 75.778880 | POINT (75.77888 26.92207) | 3604 | 7 | 8 | RAJASTHAN | 12.0 | JAIPUR | ... | 8039.0 | True | NaN | NaN | NaN | NaN | 2012 | 9 | 30 | 2012-09-30 |
38 | 657 | 26.900010 | 75.800010 | POINT (75.80001 26.90001) | 3604 | 7 | 8 | RAJASTHAN | 12.0 | JAIPUR | ... | NaN | True | NaN | NaN | NaN | NaN | 2011 | 9 | 30 | 2011-09-30 |
43 | 388 | 27.176402 | 75.956887 | POINT (75.95688699999998 27.1764023) | 3479 | 6 | 8 | RAJASTHAN | 12.0 | JAIPUR | ... | NaN | False | NaN | NaN | NaN | NaN | 2007 | 9 | 30 | 2007-09-30 |
44 | 415 | 27.186890 | 75.953090 | POINT (75.95309 27.18689) | 3479 | 6 | 8 | RAJASTHAN | 12.0 | JAIPUR | ... | NaN | False | NaN | NaN | NaN | NaN | 2008 | 9 | 30 | 2008-09-30 |
46 | 273 | 22.719569 | 75.857726 | POINT (75.85772579999998 22.7195687) | 2588 | 26 | 23 | MADHYA PRADESH | 26.0 | INDORE | ... | 7832.0 | False | NaN | NaN | NaN | NaN | 2009 | 9 | 30 | 2009-09-30 |
48 | 822 | 30.663689 | 76.300493 | POINT (76.3004926 30.6636894) | 3375 | 8 | 3 | PUNJAB | 8.0 | FATEHGARH SAHIB * | ... | NaN | True | NaN | NaN | NaN | NaN | 2015 | 9 | 30 | 2015-09-30 |
51 | 834 | 22.619820 | 75.804508 | POINT (75.8045084 22.6198202) | 2592 | 26 | 23 | MADHYA PRADESH | 26.0 | INDORE | ... | NaN | True | NaN | NaN | NaN | NaN | 2015 | 9 | 30 | 2015-09-30 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
726 | 390 | 26.534705 | 74.645953 | POINT (74.64595266409808 26.53470452902219) | 3491 | 13 | 8 | RAJASTHAN | 21.0 | AJMER | ... | NaN | False | NaN | NaN | NaN | NaN | 2008 | 9 | 30 | 2008-09-30 |
732 | 176 | 32.083885 | 75.780756 | POINT (75.78075633327012 32.08388519833935) | 2042 | 1 | 2 | HIMACHAL PRADESH | 2.0 | KANGRA | ... | NaN | True | NaN | NaN | NaN | NaN | 2009 | 9 | 30 | 2009-09-30 |
733 | 349 | 26.011884 | 94.016435 | POINT (94.01643493638429 26.01188390700705) | 14 | 1 | 13 | NAGALAND | 5.0 | WOKHA | ... | NaN | False | NaN | NaN | NaN | NaN | 2007 | 9 | 30 | 2007-09-30 |
735 | 818 | 28.402000 | 77.292190 | POINT (77.29219000000001 28.402) | 2013 | 10 | 6 | HARYANA | 19.0 | FARIDABAD | ... | NaN | False | NaN | NaN | NaN | NaN | 2014 | 9 | 30 | 2014-09-30 |
736 | 599 | 25.920542 | 82.203121 | POINT (82.20312129407306 25.92054219449888) | 4095 | 39 | 9 | UTTAR PRADESH | 43.0 | PRATAPGARH | ... | NaN | True | NaN | NaN | NaN | NaN | 2010 | 9 | 30 | 2010-09-30 |
738 | 512 | 26.847860 | 80.885000 | POINT (80.88500000000001 26.84786) | 4002 | 35 | 9 | UTTAR PRADESH | 27.0 | LUCKNOW | ... | NaN | False | NaN | NaN | NaN | NaN | 2008 | 9 | 30 | 2008-09-30 |
742 | 777 | 28.577175 | 94.652234 | POINT (94.65223393705809 28.57717502498661) | 1267 | 1 | 12 | ARUNACHAL PRADESH | 7.0 | WEST SIANG | ... | NaN | False | NaN | NaN | NaN | NaN | 2014 | 9 | 30 | 2014-09-30 |
743 | 848 | 27.381432 | 83.079680 | POINT (83.07968013438986 27.38143204656178) | 3930 | 60 | 9 | UTTAR PRADESH | 54.0 | SIDDHARTHNAGAR | ... | NaN | False | NaN | NaN | NaN | NaN | 2015 | 9 | 30 | 2015-09-30 |
744 | 204 | 25.777043 | 73.322215 | POINT (73.32221536436916 25.77704284793257) | 3536 | 15 | 8 | RAJASTHAN | 20.0 | PALI | ... | NaN | True | NaN | NaN | NaN | NaN | 2009 | 9 | 30 | 2009-09-30 |
745 | 816 | 24.880957 | 72.861389 | POINT (72.86138916473699 24.88095719041128) | 3560 | 18 | 8 | RAJASTHAN | 19.0 | SIROHI | ... | NaN | False | NaN | NaN | NaN | NaN | 2011 | 9 | 30 | 2011-09-30 |
746 | 551 | 29.991330 | 78.192470 | POINT (78.19247 29.99133) | 3736 | 5 | 5 | UTTARKHAND | 5.0 | DEHRADUN | ... | 8918.0 | False | NaN | NaN | NaN | NaN | 2002 | 9 | 30 | 2002-09-30 |
747 | 800 | 28.929079 | 77.021128 | POINT (77.02112806121298 28.92907859087477) | 1997 | 6 | 6 | HARYANA | 8.0 | SONIPAT | ... | NaN | True | NaN | NaN | NaN | NaN | 2014 | 9 | 30 | 2014-09-30 |
750 | 2 | 17.818651 | 83.024750 | POINT (83.0247503450119 17.81865138317337) | 1044 | 22 | 28 | ANDHRA PRADESH | 13.0 | VISAKHAPATNAM | ... | NaN | False | NaN | NaN | NaN | NaN | 2008 | 9 | 30 | 2008-09-30 |
753 | 793 | 27.285131 | 77.497403 | POINT (77.49740334724723 27.2851308817623) | 3468 | 9 | 8 | RAJASTHAN | 7.0 | BHARATPUR | ... | NaN | False | NaN | NaN | NaN | NaN | 2012 | 9 | 30 | 2012-09-30 |
756 | 259 | 9.897265 | 76.326444 | POINT (76.32644361015421 9.897264773152934) | 388 | 12 | 32 | KERALA | 8.0 | ERNAKULAM | ... | NaN | False | NaN | NaN | NaN | NaN | 2010 | 9 | 30 | 2010-09-30 |
758 | 802 | 9.430000 | 76.390000 | POINT (76.39 9.43) | 404 | 16 | 32 | KERALA | 11.0 | ALAPPUZHA | ... | NaN | False | NaN | NaN | NaN | NaN | 2015 | 9 | 30 | 2015-09-30 |
759 | 225 | 15.903860 | 74.526970 | POINT (74.52697000000001 15.90386) | 2250 | 2 | 29 | KARNATAKA | 1.0 | BELGAUM | ... | NaN | False | NaN | NaN | NaN | NaN | 2006 | 9 | 30 | 2006-09-30 |
760 | 264 | 10.043080 | 76.328580 | POINT (76.32858 10.04308) | 380 | 12 | 32 | KERALA | 8.0 | ERNAKULAM | ... | NaN | True | NaN | NaN | NaN | NaN | 2002 | 9 | 30 | 2002-09-30 |
762 | 544 | 28.742759 | 78.783940 | POINT (78.78394023379346 28.74275936065301) | 3820 | 8 | 9 | UTTAR PRADESH | 4.0 | MORADABAD | ... | NaN | False | NaN | NaN | NaN | NaN | 2008 | 9 | 30 | 2008-09-30 |
764 | 784 | 17.339698 | 78.377592 | POINT (78.37759164231555 17.33969761008107) | 1084 | 10 | 28 | ANDHRA PRADESH | 6.0 | RANGAREDDI | ... | 9207.0 | True | NaN | NaN | NaN | NaN | 2014 | 9 | 30 | 2014-09-30 |
765 | 631 | 32.604780 | 75.043140 | POINT (75.04313999999999 32.60478) | 289 | 6 | 1 | JAMMU & KASHMIR | 13.0 | JAMMU | ... | 9215.0 | True | NaN | NaN | NaN | NaN | 2011 | 9 | 30 | 2011-09-30 |
766 | 174 | 28.835484 | 76.535464 | POINT (76.53546430668329 28.83548396356228) | 1993 | 7 | 6 | HARYANA | 14.0 | ROHTAK | ... | NaN | False | NaN | NaN | NaN | NaN | 2008 | 9 | 30 | 2008-09-30 |
767 | 535 | 26.141006 | 81.023732 | POINT (81.02373219215931 26.14100605620296) | 4077 | 36 | 9 | UTTAR PRADESH | 28.0 | RAE BARELI | ... | NaN | False | NaN | NaN | NaN | NaN | 2007 | 9 | 30 | 2007-09-30 |
771 | 839 | 23.799354 | 91.325810 | POINT (91.32580990529392 23.79935362940698) | 3684 | 1 | 16 | TRIPURA | 1.0 | WEST TRIPURA | ... | NaN | False | NaN | NaN | NaN | NaN | 2015 | 9 | 30 | 2015-09-30 |
776 | 810 | 25.350439 | 78.802641 | POINT (78.80264135177472 25.35043934132806) | 2441 | 6 | 23 | MADHYA PRADESH | 8.0 | TIKAMGARH | ... | NaN | True | NaN | NaN | NaN | NaN | 2009 | 9 | 30 | 2009-09-30 |
782 | 229 | 16.830626 | 75.640583 | POINT (75.64058349999999 16.8306258) | 2212 | 4 | 29 | KARNATAKA | 3.0 | BIJAPUR | ... | NaN | False | NaN | NaN | NaN | NaN | 2003 | 9 | 30 | 2003-09-30 |
784 | 737 | 30.192774 | 78.164742 | POINT (78.1647423 30.1927738) | 3731 | 5 | 5 | UTTARKHAND | 5.0 | DEHRADUN | ... | NaN | False | NaN | NaN | NaN | NaN | 2013 | 9 | 30 | 2013-09-30 |
785 | 346 | 23.800644 | 92.727956 | POINT (92.7279564 23.800644) | 3084 | 1 | 15 | MIZORAM | 3.0 | AIZAWL | ... | NaN | True | NaN | NaN | NaN | NaN | 2006 | 9 | 30 | 2006-09-30 |
787 | 760 | 13.555559 | 80.026880 | POINT (80.0268804 13.5555593) | 1254 | 40 | 28 | ANDHRA PRADESH | 23.0 | CHITTOOR | ... | NaN | False | NaN | NaN | NaN | NaN | 2013 | 9 | 30 | 2013-09-30 |
788 | 290 | 22.806404 | 81.749488 | POINT (81.7494883 22.8064043) | 2559 | 12 | 23 | MADHYA PRADESH | 47.0 | ANUPPUR | ... | 9261.0 | True | NaN | NaN | NaN | NaN | 2008 | 9 | 30 | 2008-09-30 |
426 rows × 73 columns
# Standalone Institute data
## Read Institution data
year_data_folder = os.path.join(data_folder, "Data User_2016_17")
standalone_institution = os.path.join(year_data_folder, "standalone_institution.csv")
sidf = pd.read_csv(standalone_institution)
sidf
## Read Geocoded data
geocoded_data_folder = os.path.join(data_folder, "Geocoded")
standalone_geocoded = os.path.join(geocoded_data_folder, "standalone_geocoded.shp.csv")
sgdf = pd.read_csv(standalone_geocoded)
sgdf
## merge data
standalone_merge_df = pd.merge(sgdf, sidf, on=['id'], how='inner')
## create Datetime Column
standalone_merge_df['year'] = standalone_merge_df['year_of_establishment'].astype(float).fillna(0.0).astype(int)
standalone_merge_df = standalone_merge_df[standalone_merge_df['year'] > 2000]
standalone_merge_df['month'] = 9
standalone_merge_df['day'] = 30
standalone_merge_df['datetime'] = pd.to_datetime(standalone_merge_df[['year', 'month', 'day']])
standalone_merge_df
id | latitude_x | longitude_x | geometry | index_right | OBJECTID | ST_CODE | ST_NAME | DT_CODE | DIST_NAME | ... | pin_code | has_fellowships | fellowships_id | ministry_id | has_other_minority_data | block_city_town | year | month | day | datetime | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 14518 | 28.587225 | 77.227095 | POINT (77.22709500000001 28.587225) | 1703 | 4 | 7 | DELHI | NaN | NaN | ... | 110003 | False | NaN | NaN | False | NaN | 2014 | 9 | 30 | 2014-09-30 |
1 | 10811 | 28.610940 | 77.234482 | POINT (77.234482 28.6109401) | 1703 | 4 | 7 | DELHI | NaN | NaN | ... | 413113 | False | NaN | NaN | True | NaN | 2006 | 9 | 30 | 2006-09-30 |
2 | 6791 | 28.610940 | 77.234482 | POINT (77.234482 28.6109401) | 1703 | 4 | 7 | DELHI | NaN | NaN | ... | 577501 | False | NaN | NaN | False | NaN | 2005 | 9 | 30 | 2005-09-30 |
3 | 9733 | 28.610940 | 77.234482 | POINT (77.234482 28.61094) | 1703 | 4 | 7 | DELHI | NaN | NaN | ... | 431702 | False | NaN | NaN | False | NaN | 2005 | 9 | 30 | 2005-09-30 |
4 | 13972 | 28.610940 | 77.234482 | POINT (77.234482 28.6109401) | 1703 | 4 | 7 | DELHI | NaN | NaN | ... | 380005 | False | NaN | NaN | True | NaN | 2012 | 9 | 30 | 2012-09-30 |
6 | 3494 | 28.610940 | 77.234482 | POINT (77.234482 28.6109401) | 1703 | 4 | 7 | DELHI | NaN | NaN | ... | 501301 | False | NaN | NaN | True | NaN | 2005 | 9 | 30 | 2005-09-30 |
9 | 16631 | 28.610010 | 77.230010 | POINT (77.23000999999999 28.61001) | 1703 | 4 | 7 | DELHI | NaN | NaN | ... | 322001 | False | NaN | NaN | False | NaN | 2016 | 9 | 30 | 2016-09-30 |
13 | 12625 | 15.354562 | 75.135566 | POINT (75.13556599999998 15.354562) | 2266 | 11 | 29 | KARNATAKA | 9.0 | DHARWAD | ... | 580023 | False | NaN | NaN | False | NaN | 2004 | 9 | 30 | 2004-09-30 |
14 | 6618 | 15.364708 | 75.123955 | POINT (75.12395499999998 15.364708) | 2266 | 11 | 29 | KARNATAKA | 9.0 | DHARWAD | ... | 580025 | False | NaN | NaN | False | NaN | 2005 | 9 | 30 | 2005-09-30 |
15 | 4404 | 15.354562 | 75.135566 | POINT (75.13556599999998 15.354562) | 2266 | 11 | 29 | KARNATAKA | 9.0 | DHARWAD | ... | 580023 | False | NaN | NaN | False | NaN | 2001 | 9 | 30 | 2001-09-30 |
16 | 1259 | 15.398356 | 75.130445 | POINT (75.13044499999998 15.398356) | 2266 | 11 | 29 | KARNATAKA | 9.0 | DHARWAD | ... | 580021 | False | NaN | NaN | True | NaN | 2009 | 9 | 30 | 2009-09-30 |
17 | 6409 | 15.364708 | 75.121240 | POINT (75.12123955 15.364708) | 2266 | 11 | 29 | KARNATAKA | 9.0 | DHARWAD | ... | 580020 | False | NaN | NaN | False | NaN | 2005 | 9 | 30 | 2005-09-30 |
20 | 4225 | 15.341170 | 75.106370 | POINT (75.10637 15.34117) | 2266 | 11 | 29 | KARNATAKA | 9.0 | DHARWAD | ... | 580024 | False | NaN | NaN | False | NaN | 2003 | 9 | 30 | 2003-09-30 |
21 | 13767 | 20.520000 | 75.700000 | POINT (75.70000009999998 20.5200001) | 2711 | 18 | 27 | MAHARASHTRA | 19.0 | AURANGABAD | ... | 425111 | False | NaN | NaN | False | NaN | 2011 | 9 | 30 | 2011-09-30 |
23 | 10245 | 18.481541 | 73.827420 | POINT (73.82742 18.481541) | 2889 | 34 | 27 | MAHARASHTRA | 25.0 | PUNE | ... | 411051 | False | NaN | NaN | False | NaN | 2006 | 9 | 30 | 2006-09-30 |
24 | 14148 | 28.455001 | 77.517001 | POINT (77.51700099999999 28.455001) | 3853 | 13 | 9 | UTTAR PRADESH | 10.0 | GAUTAM BUDDHA NAGAR * | ... | 201308 | False | NaN | NaN | True | NaN | 2005 | 9 | 30 | 2005-09-30 |
25 | 932 | 28.356010 | 77.578010 | POINT (77.57801000000001 28.35601) | 3853 | 13 | 9 | UTTAR PRADESH | 10.0 | GAUTAM BUDDHA NAGAR * | ... | 131039 | False | NaN | NaN | False | NaN | 2006 | 9 | 30 | 2006-09-30 |
26 | 8633 | 28.347697 | 77.553344 | POINT (77.55334399999998 28.347697) | 3853 | 13 | 9 | UTTAR PRADESH | 10.0 | GAUTAM BUDDHA NAGAR * | ... | 203201 | False | NaN | NaN | False | NaN | 2005 | 9 | 30 | 2005-09-30 |
27 | 8633 | 28.350712 | 77.551318 | POINT (77.5513181 28.3507117) | 3853 | 13 | 9 | UTTAR PRADESH | 10.0 | GAUTAM BUDDHA NAGAR * | ... | 203201 | False | NaN | NaN | False | NaN | 2005 | 9 | 30 | 2005-09-30 |
28 | 435 | 28.458697 | 77.491139 | POINT (77.49113873 28.45869699) | 3853 | 13 | 9 | UTTAR PRADESH | 10.0 | GAUTAM BUDDHA NAGAR * | ... | 201306 | False | NaN | NaN | False | NaN | 2008 | 9 | 30 | 2008-09-30 |
30 | 9384 | 23.250001 | 75.250001 | POINT (75.25000099999998 23.250001) | 2533 | 24 | 23 | MADHYA PRADESH | 20.0 | RATLAM | ... | 431203 | False | NaN | NaN | False | NaN | 2008 | 9 | 30 | 2008-09-30 |
32 | 15147 | 23.292615 | 75.071686 | POINT (75.071686 23.292615) | 2533 | 24 | 23 | MADHYA PRADESH | 20.0 | RATLAM | ... | 457001 | False | NaN | NaN | False | NaN | 2006 | 9 | 30 | 2006-09-30 |
35 | 5806 | 23.256720 | 75.256720 | POINT (75.25672 23.25672) | 2533 | 24 | 23 | MADHYA PRADESH | 20.0 | RATLAM | ... | 389151 | False | NaN | NaN | False | NaN | 2002 | 9 | 30 | 2002-09-30 |
36 | 13778 | 23.250010 | 75.250010 | POINT (75.25001 23.25001) | 2533 | 24 | 23 | MADHYA PRADESH | 20.0 | RATLAM | ... | 626117 | False | NaN | NaN | False | NaN | 2011 | 9 | 30 | 2011-09-30 |
37 | 14171 | 23.256720 | 75.256720 | POINT (75.25672 23.25672) | 2533 | 24 | 23 | MADHYA PRADESH | 20.0 | RATLAM | ... | 244901 | False | NaN | NaN | False | NaN | 2010 | 9 | 30 | 2010-09-30 |
38 | 4437 | 23.250010 | 75.256720 | POINT (75.25672 23.25001) | 2533 | 24 | 23 | MADHYA PRADESH | 20.0 | RATLAM | ... | 683503 | False | NaN | NaN | True | NaN | 2005 | 9 | 30 | 2005-09-30 |
40 | 14589 | 23.256720 | 75.256720 | POINT (75.25672 23.25672) | 2533 | 24 | 23 | MADHYA PRADESH | 20.0 | RATLAM | ... | 422103 | False | NaN | NaN | False | NaN | 2006 | 9 | 30 | 2006-09-30 |
42 | 5617 | 23.250010 | 75.250010 | POINT (75.25001 23.25001) | 2533 | 24 | 23 | MADHYA PRADESH | 20.0 | RATLAM | ... | 518502 | False | NaN | NaN | False | NaN | 2007 | 9 | 30 | 2007-09-30 |
43 | 5414 | 23.256720 | 75.256720 | POINT (75.25672 23.25672) | 2533 | 24 | 23 | MADHYA PRADESH | 20.0 | RATLAM | ... | 243001 | False | NaN | NaN | False | NaN | 2002 | 9 | 30 | 2002-09-30 |
45 | 2006 | 23.256720 | 75.025672 | POINT (75.025672 23.25672) | 2533 | 24 | 23 | MADHYA PRADESH | 20.0 | RATLAM | ... | 431002 | False | NaN | NaN | False | NaN | 2010 | 9 | 30 | 2010-09-30 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
4553 | 16664 | 26.080010 | 83.300070 | POINT (83.30007000000001 26.08001) | 4089 | 69 | 9 | UTTAR PRADESH | 61.0 | AZAMGARH | ... | 274202 | False | NaN | NaN | False | NaN | 2016 | 9 | 30 | 2016-09-30 |
4555 | 16501 | 19.234904 | 77.346099 | POINT (77.34609899999998 19.234904) | 2815 | 16 | 27 | MAHARASHTRA | 15.0 | NANDED | ... | 431704 | False | NaN | NaN | True | NaN | 2015 | 9 | 30 | 2015-09-30 |
4556 | 15911 | 30.445340 | 77.602120 | POINT (77.60212 30.44534) | 2098 | 4 | 2 | HIMACHAL PRADESH | 10.0 | SIRMAUR | ... | 173025 | False | NaN | NaN | False | NaN | 2015 | 9 | 30 | 2015-09-30 |
4557 | 14442 | 20.580010 | 74.160010 | POINT (74.16001 20.58001) | 2692 | 2 | 27 | MAHARASHTRA | 20.0 | NASHIK | ... | 424304 | False | NaN | NaN | False | NaN | 2012 | 9 | 30 | 2012-09-30 |
4558 | 4982 | 31.430010 | 75.720010 | POINT (75.72001 31.43001) | 3319 | 4 | 3 | PUNJAB | 4.0 | JALANDHAR | ... | 144102 | False | NaN | NaN | False | NaN | 2005 | 9 | 30 | 2005-09-30 |
4559 | 16628 | 25.200010 | 75.800010 | POINT (75.80001 25.20001) | 3567 | 24 | 8 | RAJASTHAN | 30.0 | KOTA | ... | 324005 | False | NaN | NaN | False | NaN | 2008 | 9 | 30 | 2008-09-30 |
4560 | 16661 | 25.234282 | 75.891489 | POINT (75.89148900000001 25.234282) | 3567 | 24 | 8 | RAJASTHAN | 30.0 | KOTA | ... | 324002 | False | NaN | NaN | False | NaN | 2007 | 9 | 30 | 2007-09-30 |
4561 | 7637 | 26.697419 | 76.921637 | POINT (76.921637 26.697419) | 3506 | 10 | 8 | RAJASTHAN | 9.0 | KARAULI * | ... | 322220 | False | NaN | NaN | True | NaN | 2004 | 9 | 30 | 2004-09-30 |
4562 | 15756 | 27.301550 | 79.090030 | POINT (79.09003 27.30155) | 3936 | 21 | 9 | UTTAR PRADESH | 18.0 | MAINPURI | ... | 207247 | False | NaN | NaN | False | NaN | 2010 | 9 | 30 | 2010-09-30 |
4564 | 14976 | 31.320560 | 75.570580 | POINT (75.57058000000001 31.32056) | 3333 | 4 | 3 | PUNJAB | 4.0 | JALANDHAR | ... | 144106 | False | NaN | NaN | False | NaN | 2014 | 9 | 30 | 2014-09-30 |
4565 | 15771 | 24.678563 | 78.449324 | POINT (78.449324 24.678563) | 4176 | 46 | 9 | UTTAR PRADESH | 37.0 | LALITPUR | ... | 284403 | False | NaN | NaN | False | NaN | 2014 | 9 | 30 | 2014-09-30 |
4566 | 14818 | 25.300010 | 87.350010 | POINT (87.35000999999998 25.30001) | 1499 | 26 | 10 | BIHAR | 22.0 | BHAGALPUR | ... | 803111 | False | NaN | NaN | False | NaN | 2010 | 9 | 30 | 2010-09-30 |
4569 | 15634 | 11.437124 | 75.765892 | POINT (75.76589229999999 11.4371235) | 323 | 5 | 32 | KERALA | 4.0 | KOZHIKODE | ... | 673323 | False | NaN | NaN | False | NaN | 2015 | 9 | 30 | 2015-09-30 |
4570 | 4603 | 12.029814 | 75.339770 | POINT (75.33976970000001 12.0298139) | 308 | 1 | 32 | KERALA | 2.0 | KANNUR | ... | 670143 | False | NaN | NaN | False | NaN | 2001 | 9 | 30 | 2001-09-30 |
4571 | 4585 | 12.073890 | 75.295961 | POINT (75.29596120000001 12.0738897) | 308 | 1 | 32 | KERALA | 2.0 | KANNUR | ... | 670503 | False | NaN | NaN | True | NaN | 2002 | 9 | 30 | 2002-09-30 |
4572 | 4587 | 12.484214 | 74.992198 | POINT (74.992198 12.484214) | 301 | 1 | 32 | KERALA | 1.0 | KASARAGOD | ... | 671121 | False | NaN | NaN | False | NaN | 2002 | 9 | 30 | 2002-09-30 |
4573 | 16136 | 12.930885 | 77.620721 | POINT (77.62072090000001 12.9308848) | 2385 | 26 | 29 | KARNATAKA | 20.0 | BANGALORE | ... | 523257 | False | NaN | NaN | False | NaN | 2016 | 9 | 30 | 2016-09-30 |
4574 | 4351 | 12.930885 | 77.620721 | POINT (77.62072090000001 12.9308848) | 2385 | 26 | 29 | KARNATAKA | 20.0 | BANGALORE | ... | 576007 | False | NaN | NaN | False | NaN | 2003 | 9 | 30 | 2003-09-30 |
4575 | 4336 | 12.956910 | 77.541050 | POINT (77.5410505 12.95691) | 2379 | 26 | 29 | KARNATAKA | 20.0 | BANGALORE | ... | 562162 | False | NaN | NaN | False | NaN | 2004 | 9 | 30 | 2004-09-30 |
4576 | 15492 | 19.281366 | 84.791995 | POINT (84.791995 19.2813656) | 3250 | 20 | 21 | ORISSA | 19.0 | GANJAM | ... | 760010 | False | NaN | NaN | False | NaN | 2011 | 9 | 30 | 2011-09-30 |
4577 | 2283 | 19.299307 | 84.863917 | POINT (84.8639167 19.2993072) | 3250 | 20 | 21 | ORISSA | 19.0 | GANJAM | ... | 760010 | False | NaN | NaN | False | NaN | 2004 | 9 | 30 | 2004-09-30 |
4578 | 12459 | 22.360494 | 82.757349 | POINT (82.757349 22.3604944) | 1585 | 4 | 22 | CHHATTISGARH | 5.0 | KORBA * | ... | 495667 | False | NaN | NaN | False | NaN | 2005 | 9 | 30 | 2005-09-30 |
4579 | 4848 | 23.742035 | 92.720956 | POINT (92.7209562 23.7420348) | 3089 | 1 | 15 | MIZORAM | 3.0 | AIZAWL | ... | 796009 | False | NaN | NaN | True | NaN | 2005 | 9 | 30 | 2005-09-30 |
4582 | 2591 | 25.034508 | 73.859927 | POINT (73.8599269 25.0345077) | 3565 | 22 | 8 | RAJASTHAN | 25.0 | RAJSAMAND * | ... | 313326 | False | NaN | NaN | False | NaN | 2006 | 9 | 30 | 2006-09-30 |
4583 | 4847 | 25.544750 | 91.886897 | POINT (91.88689649999999 25.5447502) | 3051 | 1 | 17 | MEGHALAYA | 6.0 | EAST KHASI HILLS | ... | 793010 | False | NaN | NaN | False | NaN | 2007 | 9 | 30 | 2007-09-30 |
4584 | 8937 | 25.558905 | 91.904315 | POINT (91.9043147 25.5589052) | 3048 | 1 | 17 | MEGHALAYA | 6.0 | EAST KHASI HILLS | ... | 793014 | False | NaN | 22.0 | False | NaN | 2008 | 9 | 30 | 2008-09-30 |
4586 | 3295 | 26.367552 | 79.629555 | POINT (79.62955479999999 26.3675518) | 4043 | 41 | 9 | UTTAR PRADESH | 33.0 | KANPUR DEHAT | ... | 209125 | False | NaN | NaN | False | NaN | 2014 | 9 | 30 | 2014-09-30 |
4587 | 14490 | 31.634966 | 74.837252 | POINT (74.83725150000001 31.6349661) | 3310 | 2 | 3 | PUNJAB | 2.0 | AMRITSAR | ... | 143002 | True | 8087.0 | NaN | False | NaN | 2010 | 9 | 30 | 2010-09-30 |
4588 | 3857 | 31.994829 | 76.789611 | POINT (76.7896109 31.9948287) | 2053 | 2 | 2 | HIMACHAL PRADESH | 5.0 | MANDI | ... | 175015 | False | NaN | NaN | False | NaN | 2009 | 9 | 30 | 2009-09-30 |
4589 | 15889 | 16.757173 | 81.679963 | POINT (81.67996290000001 16.7571731) | 1143 | 26 | 28 | ANDHRA PRADESH | 15.0 | WEST GODAVARI | ... | 634211 | False | NaN | NaN | False | NaN | 2015 | 9 | 30 | 2015-09-30 |
2995 rows × 63 columns
delta_year = None
#Get all variables
variables = [
'colleges_opened',
'colleges_opened1',
'colleges_opened2',
'colleges_opened3',
'colleges_opened4',
'colleges_opened5',
'universities_opened',
'universities_opened1',
'universities_opened2',
'universities_opened3',
'universities_opened4',
'universities_opened5',
'standalone_institutes_opened',
'standalone_institutes_opened1',
'standalone_institutes_opened2',
'standalone_institutes_opened3',
'standalone_institutes_opened4',
'standalone_institutes_opened5'
]
def get_ac_variables(row):
df = pd.DataFrame(row).T
next_elect = acdf[(acdf['state_code'] == row['state_code']) & (acdf['constituency_no'] == row['constituency_no']) & (acdf['datetime'] > row['datetime'])][0:1]
if len(next_elect) < 1:
next_elect = df.copy()
next_elect['datetime'] = next_elect['datetime'] + pd.DateOffset(years=5)
#print(next_elect)
delta_year = math.ceil((next_elect['datetime'].dt.year - row['datetime'].year)/5)
#print(delta_year)
df1 = colleges_merge_df[(colleges_merge_df['ST_CODE'] == row['state_code']) & (colleges_merge_df['AC_NO'] == row['constituency_no']) & (colleges_merge_df['datetime'] > row['datetime']) & (colleges_merge_df['datetime'] <= next_elect['datetime'].values[0])]
colleges_opened = df1.shape[0]
colleges_opened1 = df1[df1['datetime'] <= (row['datetime'] + pd.DateOffset(years=delta_year+0))].shape[0]
colleges_opened2 = df1[(df1['datetime'] <= (row['datetime'] + pd.DateOffset(years=delta_year+1))) & (df1['datetime'] > (row['datetime'] + pd.DateOffset(years=delta_year+0)))].shape[0]
colleges_opened3 = df1[(df1['datetime'] <= (row['datetime'] + pd.DateOffset(years=delta_year+2))) & (df1['datetime'] > (row['datetime'] + pd.DateOffset(years=delta_year+1)))].shape[0]
colleges_opened4 = df1[(df1['datetime'] <= (row['datetime'] + pd.DateOffset(years=delta_year+3))) & (df1['datetime'] > (row['datetime'] + pd.DateOffset(years=delta_year+2)))].shape[0]
colleges_opened5 = df1[df1['datetime'] > (row['datetime'] + pd.DateOffset(years=delta_year+3))].shape[0]
df2 = university_merge_df[(university_merge_df['ST_CODE'] == row['state_code']) & (university_merge_df['AC_NO'] == row['constituency_no']) & (university_merge_df['datetime'] > row['datetime']) & (university_merge_df['datetime'] <= next_elect['datetime'].values[0])]
universities_opened = df2.shape[0]
universities_opened1 = df2[df2['datetime'] <= (row['datetime'] + pd.DateOffset(years=delta_year+0))].shape[0]
universities_opened2 = df2[(df2['datetime'] <= (row['datetime'] + pd.DateOffset(years=delta_year+1))) & (df2['datetime'] > (row['datetime'] + pd.DateOffset(years=delta_year+0)))].shape[0]
universities_opened3 = df2[(df2['datetime'] <= (row['datetime'] + pd.DateOffset(years=delta_year+2))) & (df2['datetime'] > (row['datetime'] + pd.DateOffset(years=delta_year+1)))].shape[0]
universities_opened4 = df2[(df2['datetime'] <= (row['datetime'] + pd.DateOffset(years=delta_year+3))) & (df2['datetime'] > (row['datetime'] + pd.DateOffset(years=delta_year+2)))].shape[0]
universities_opened5 = df2[df2['datetime'] > (row['datetime'] + pd.DateOffset(years=delta_year+3))].shape[0]
df3 = standalone_merge_df[(standalone_merge_df['ST_CODE'] == row['state_code']) & (standalone_merge_df['AC_NO'] == row['constituency_no']) & (standalone_merge_df['datetime'] > row['datetime']) & (standalone_merge_df['datetime'] <= next_elect['datetime'].values[0])]
standalone_institutes_opened = df3.shape[0]
standalone_institutes_opened1 = df3[df3['datetime'] <= (row['datetime'] + pd.DateOffset(years=delta_year+0))].shape[0]
standalone_institutes_opened2 = df3[(df3['datetime'] <= (row['datetime'] + pd.DateOffset(years=delta_year+1))) & (df3['datetime'] > (row['datetime'] + pd.DateOffset(years=delta_year+0)))].shape[0]
standalone_institutes_opened3 = df3[(df3['datetime'] <= (row['datetime'] + pd.DateOffset(years=delta_year+2))) & (df3['datetime'] > (row['datetime'] + pd.DateOffset(years=delta_year+1)))].shape[0]
standalone_institutes_opened4 = df3[(df3['datetime'] <= (row['datetime'] + pd.DateOffset(years=delta_year+3))) & (df3['datetime'] > (row['datetime'] + pd.DateOffset(years=delta_year+2)))].shape[0]
standalone_institutes_opened5 = df3[df3['datetime'] > (row['datetime'] + pd.DateOffset(years=delta_year+3))].shape[0]
return colleges_opened, colleges_opened1, colleges_opened2, colleges_opened3, colleges_opened4, colleges_opened5, universities_opened, universities_opened1, universities_opened2, universities_opened3, universities_opened4, universities_opened5, standalone_institutes_opened, standalone_institutes_opened1, standalone_institutes_opened2, standalone_institutes_opened3, standalone_institutes_opened4, standalone_institutes_opened5
#Apply This Function
acdf[variables] = acdf.apply(get_ac_variables, axis=1, result_type='expand')
acdf.sort_values(axis=0, by='colleges_opened')
state_name | state_code | constituency_no | year | month | day | datetime | OBJECTID | ST_CODE | ST_NAME | ... | universities_opened2 | universities_opened3 | universities_opened4 | universities_opened5 | standalone_institutes_opened | standalone_institutes_opened1 | standalone_institutes_opened2 | standalone_institutes_opened3 | standalone_institutes_opened4 | standalone_institutes_opened5 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | Jammu & Kashmir | 1 | 1 | 2008 | 12 | 1 | 2008-12-01 | 1 | 1 | JAMMU & KASHMIR | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
4796 | Odisha | 21 | 95 | 2009 | 5 | 1 | 2009-05-01 | 15 | 21 | ORISSA | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
4795 | Odisha | 21 | 94 | 2014 | 5 | 1 | 2014-05-01 | 15 | 21 | ORISSA | ... | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
4793 | Odisha | 21 | 93 | 2014 | 5 | 1 | 2014-05-01 | 14 | 21 | ORISSA | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
4792 | Odisha | 21 | 93 | 2009 | 5 | 1 | 2009-05-01 | 14 | 21 | ORISSA | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
4791 | Odisha | 21 | 92 | 2014 | 5 | 1 | 2014-05-01 | 16 | 21 | ORISSA | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
4789 | Odisha | 21 | 91 | 2014 | 5 | 1 | 2014-05-01 | 14 | 21 | ORISSA | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
4788 | Odisha | 21 | 91 | 2009 | 5 | 1 | 2009-05-01 | 14 | 21 | ORISSA | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
4787 | Odisha | 21 | 90 | 2014 | 5 | 1 | 2014-05-01 | 14 | 21 | ORISSA | ... | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
4786 | Odisha | 21 | 90 | 2009 | 5 | 1 | 2009-05-01 | 14 | 21 | ORISSA | ... | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 |
4785 | Odisha | 21 | 89 | 2014 | 5 | 1 | 2014-05-01 | 14 | 21 | ORISSA | ... | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
4797 | Odisha | 21 | 95 | 2014 | 5 | 1 | 2014-05-01 | 15 | 21 | ORISSA | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
4783 | Odisha | 21 | 88 | 2014 | 5 | 1 | 2014-05-01 | 14 | 21 | ORISSA | ... | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
4780 | Odisha | 21 | 87 | 2009 | 5 | 1 | 2009-05-01 | 14 | 21 | ORISSA | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
4779 | Odisha | 21 | 86 | 2014 | 5 | 1 | 2014-05-01 | 13 | 21 | ORISSA | ... | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
4778 | Odisha | 21 | 86 | 2009 | 5 | 1 | 2009-05-01 | 13 | 21 | ORISSA | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
4777 | Odisha | 21 | 85 | 2014 | 5 | 1 | 2014-05-01 | 13 | 21 | ORISSA | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
4776 | Odisha | 21 | 85 | 2009 | 5 | 1 | 2009-05-01 | 13 | 21 | ORISSA | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
4775 | Odisha | 21 | 84 | 2014 | 5 | 1 | 2014-05-01 | 13 | 21 | ORISSA | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
4773 | Odisha | 21 | 83 | 2014 | 5 | 1 | 2014-05-01 | 13 | 21 | ORISSA | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
4772 | Odisha | 21 | 83 | 2009 | 5 | 1 | 2009-05-01 | 13 | 21 | ORISSA | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
4771 | Odisha | 21 | 82 | 2014 | 5 | 1 | 2014-05-01 | 13 | 21 | ORISSA | ... | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
4770 | Odisha | 21 | 82 | 2009 | 5 | 1 | 2009-05-01 | 13 | 21 | ORISSA | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
4781 | Odisha | 21 | 87 | 2014 | 5 | 1 | 2014-05-01 | 14 | 21 | ORISSA | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
4769 | Odisha | 21 | 81 | 2014 | 5 | 1 | 2014-05-01 | 11 | 21 | ORISSA | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
4798 | Odisha | 21 | 96 | 2009 | 5 | 1 | 2009-05-01 | 15 | 21 | ORISSA | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
4800 | Odisha | 21 | 97 | 2009 | 5 | 1 | 2009-05-01 | 15 | 21 | ORISSA | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
4825 | Odisha | 21 | 109 | 2014 | 5 | 1 | 2014-05-01 | 17 | 21 | ORISSA | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
4824 | Odisha | 21 | 109 | 2009 | 5 | 1 | 2009-05-01 | 17 | 21 | ORISSA | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
4823 | Odisha | 21 | 108 | 2014 | 5 | 1 | 2014-05-01 | 17 | 21 | ORISSA | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
5108 | Madhya Pradesh | 23 | 14 | 2008 | 12 | 1 | 2008-12-01 | 3 | 23 | MADHYA PRADESH | ... | 1 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 1 | 1 |
1828 | Uttar Pradesh | 9 | 159 | 2012 | 3 | 1 | 2012-03-01 | 32 | 9 | UTTAR PRADESH | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1406 | Rajasthan | 8 | 148 | 2008 | 12 | 1 | 2008-12-01 | 18 | 8 | RAJASTHAN | ... | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
6529 | Andhra Pradesh | 28 | 48 | 2014 | 5 | 1 | 2014-05-01 | 14 | 28 | ANDHRA PRADESH | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
7427 | Karnataka | 29 | 203 | 2013 | 5 | 1 | 2013-05-01 | 17 | 29 | KARNATAKA | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1223 | Rajasthan | 8 | 56 | 2013 | 12 | 1 | 2013-12-01 | 7 | 8 | RAJASTHAN | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
5620 | Gujarat | 24 | 44 | 2012 | 12 | 1 | 2012-12-01 | 8 | 24 | GUJARAT | ... | 0 | 1 | 0 | 0 | 2 | 1 | 1 | 0 | 0 | 0 |
1126 | Rajasthan | 8 | 9 | 2008 | 12 | 1 | 2008-12-01 | 1 | 8 | RAJASTHAN | ... | 0 | 0 | 0 | 0 | 2 | 0 | 1 | 0 | 0 | 1 |
6278 | Maharashtra | 27 | 211 | 2009 | 10 | 1 | 2009-10-01 | 35 | 27 | MAHARASHTRA | ... | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 |
6528 | Andhra Pradesh | 28 | 48 | 2009 | 5 | 1 | 2009-05-01 | 14 | 28 | ANDHRA PRADESH | ... | 0 | 0 | 0 | 0 | 3 | 1 | 0 | 0 | 2 | 0 |
5388 | Madhya Pradesh | 23 | 154 | 2008 | 12 | 1 | 2008-12-01 | 19 | 23 | MADHYA PRADESH | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
8074 | Tamil Nadu | 33 | 122 | 2011 | 5 | 1 | 2011-05-01 | 21 | 33 | TAMIL NADU | ... | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 |
5716 | Gujarat | 24 | 104 | 2012 | 12 | 1 | 2012-12-01 | 15 | 24 | GUJARAT | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
7388 | Karnataka | 29 | 184 | 2008 | 5 | 1 | 2008-05-01 | 23 | 29 | KARNATAKA | ... | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 |
6534 | Andhra Pradesh | 28 | 51 | 2009 | 5 | 1 | 2009-05-01 | 10 | 28 | ANDHRA PRADESH | ... | 0 | 0 | 0 | 0 | 4 | 2 | 0 | 0 | 2 | 0 |
5510 | Madhya Pradesh | 23 | 219 | 2008 | 12 | 1 | 2008-12-01 | 24 | 23 | MADHYA PRADESH | ... | 0 | 0 | 0 | 0 | 6 | 1 | 2 | 2 | 1 | 0 |
5380 | Madhya Pradesh | 23 | 150 | 2008 | 12 | 1 | 2008-12-01 | 19 | 23 | MADHYA PRADESH | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
7320 | Karnataka | 29 | 150 | 2008 | 5 | 1 | 2008-05-01 | 27 | 29 | KARNATAKA | ... | 0 | 0 | 0 | 0 | 2 | 0 | 2 | 0 | 0 | 0 |
5608 | Gujarat | 24 | 38 | 2012 | 12 | 1 | 2012-12-01 | 6 | 24 | GUJARAT | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1368 | Rajasthan | 8 | 129 | 2008 | 12 | 1 | 2008-12-01 | 16 | 8 | RAJASTHAN | ... | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 |
5732 | Gujarat | 24 | 112 | 2012 | 12 | 1 | 2012-12-01 | 16 | 24 | GUJARAT | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
6262 | Maharashtra | 27 | 203 | 2009 | 10 | 1 | 2009-10-01 | 35 | 27 | MAHARASHTRA | ... | 0 | 0 | 0 | 0 | 3 | 2 | 0 | 0 | 0 | 1 |
5390 | Madhya Pradesh | 23 | 155 | 2008 | 12 | 1 | 2008-12-01 | 19 | 23 | MADHYA PRADESH | ... | 0 | 0 | 1 | 0 | 3 | 1 | 2 | 0 | 0 | 0 |
6232 | Maharashtra | 27 | 188 | 2009 | 10 | 1 | 2009-10-01 | 33 | 27 | MAHARASHTRA | ... | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
1180 | Rajasthan | 8 | 35 | 2008 | 12 | 1 | 2008-12-01 | 5 | 8 | RAJASTHAN | ... | 0 | 0 | 1 | 0 | 2 | 2 | 0 | 0 | 0 | 0 |
7168 | Karnataka | 29 | 74 | 2008 | 5 | 1 | 2008-05-01 | 11 | 29 | KARNATAKA | ... | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
6524 | Andhra Pradesh | 28 | 46 | 2009 | 5 | 1 | 2009-05-01 | 7 | 28 | ANDHRA PRADESH | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
5488 | Madhya Pradesh | 23 | 204 | 2008 | 12 | 1 | 2008-12-01 | 26 | 23 | MADHYA PRADESH | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
7426 | Karnataka | 29 | 203 | 2008 | 5 | 1 | 2008-05-01 | 17 | 29 | KARNATAKA | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1222 | Rajasthan | 8 | 56 | 2008 | 12 | 1 | 2008-12-01 | 7 | 8 | RAJASTHAN | ... | 0 | 0 | 2 | 1 | 1 | 0 | 1 | 0 | 0 | 0 |
8358 rows × 35 columns
# Output to CSV
acdf.to_csv(os.path.join(output_folder, "Assembly_Constituencies_Variables.csv"), encoding='utf-8', index=False)