In [20]:
# Import Libraries
import pandas as pd
import geopandas as gpd
from shapely.geometry import Point, Polygon
import lxml
import os
import glob
import time
import datetime
import json
import itertools
In [21]:
# Set Output Folder
output_folder = os.path.abspath("output")
if not os.path.exists(output_folder):
    os.makedirs(output_folder)
In [22]:
# Import data folders
data_folder = os.path.abspath("data")
In [23]:
# Helping Functions
def remove_consecutive_duplicates(x):
    return ''.join(i for i, _ in itertools.groupby(x))
In [24]:
# Read Constituency Data
ac_gdf = None
ac_filepath = os.path.join(data_folder, "AC", "India_AC.shp")
ac_gdf = gpd.read_file(ac_filepath)
ac_gdf

# Read Constituency Data
ac_file = os.path.join(data_folder, "General_Later_Ashoka_alldata.csv")
acdf = pd.read_csv(ac_file)
acdf['state_name'] = acdf['state_name'].str.replace("_", " ")
#acdf = acdf[['state_name', 'constituency_no', 'constituency_name', 'year', 'month']]
acdf = acdf.drop_duplicates(subset=None, keep="first", inplace=False).reset_index(drop=True)
acdf.loc[acdf['newstate_code'] == 36, 'newstate_code'] = 28 #Telangana  Fix
acdf = acdf[['state_name', 'state_code', 'constituency_no', 'year', 'month']]
acdf['day'] = 1
acdf['dyear'] = 0
acdf.loc[(acdf['month'] > 9) | (acdf['year'] == 2008), 'dyear'] = 1
acdf['dyear'] = acdf['year'] + acdf['dyear']
acdf['datetime'] = pd.to_datetime(acdf[['year', 'month', 'day']])
acdf = acdf.drop_duplicates().reset_index(drop=True)
acdf = pd.merge(acdf, ac_gdf,  how='inner', left_on=['state_code', 'constituency_no'], right_on = ['ST_CODE','AC_NO'])#[['ST_CODE', 'ST_NAME','DT_CODE', 'DIST_NAME', 'AC_NO', 'AC_NAME', 'PC_NO', 'PC_NAME']]
acdf = acdf[acdf.columns[:-5]]
acdf
Out[24]:
state_name state_code constituency_no year month day dyear datetime OBJECTID ST_CODE ST_NAME DT_CODE DIST_NAME AC_NO AC_NAME PC_NO PC_NAME
0 Jammu & Kashmir 1 1 2008 12 1 2009 2008-12-01 1 1 JAMMU & KASHMIR 1.0 KUPWARA 1 KARNAH 1 BARAMULLA
1 Jammu & Kashmir 1 1 2014 12 1 2015 2014-12-01 1 1 JAMMU & KASHMIR 1.0 KUPWARA 1 KARNAH 1 BARAMULLA
2 Jammu & Kashmir 1 2 2008 12 1 2009 2008-12-01 1 1 JAMMU & KASHMIR 1.0 KUPWARA 2 KUPWARA 1 BARAMULLA
3 Jammu & Kashmir 1 2 2014 12 1 2015 2014-12-01 1 1 JAMMU & KASHMIR 1.0 KUPWARA 2 KUPWARA 1 BARAMULLA
4 Jammu & Kashmir 1 3 2008 12 1 2009 2008-12-01 1 1 JAMMU & KASHMIR 1.0 KUPWARA 3 LOLAB 1 BARAMULLA
5 Jammu & Kashmir 1 3 2014 12 1 2015 2014-12-01 1 1 JAMMU & KASHMIR 1.0 KUPWARA 3 LOLAB 1 BARAMULLA
6 Jammu & Kashmir 1 4 2008 12 1 2009 2008-12-01 1 1 JAMMU & KASHMIR 1.0 KUPWARA 4 HANDWARA 1 BARAMULLA
7 Jammu & Kashmir 1 4 2014 12 1 2015 2014-12-01 1 1 JAMMU & KASHMIR 1.0 KUPWARA 4 HANDWARA 1 BARAMULLA
8 Jammu & Kashmir 1 5 2008 12 1 2009 2008-12-01 1 1 JAMMU & KASHMIR 1.0 KUPWARA 5 LANGATE 1 BARAMULLA
9 Jammu & Kashmir 1 5 2014 12 1 2015 2014-12-01 1 1 JAMMU & KASHMIR 1.0 KUPWARA 5 LANGATE 1 BARAMULLA
10 Jammu & Kashmir 1 6 2008 12 1 2009 2008-12-01 1 1 JAMMU & KASHMIR 2.0 BARAMULA 6 URI 1 BARAMULLA
11 Jammu & Kashmir 1 6 2014 12 1 2015 2014-12-01 1 1 JAMMU & KASHMIR 2.0 BARAMULA 6 URI 1 BARAMULLA
12 Jammu & Kashmir 1 7 2008 12 1 2009 2008-12-01 1 1 JAMMU & KASHMIR 2.0 BARAMULA 7 RAFIABAD 1 BARAMULLA
13 Jammu & Kashmir 1 7 2014 12 1 2015 2014-12-01 1 1 JAMMU & KASHMIR 2.0 BARAMULA 7 RAFIABAD 1 BARAMULLA
14 Jammu & Kashmir 1 8 2008 12 1 2009 2008-12-01 1 1 JAMMU & KASHMIR 2.0 BARAMULA 8 SOPORE 1 BARAMULLA
15 Jammu & Kashmir 1 8 2014 12 1 2015 2014-12-01 1 1 JAMMU & KASHMIR 2.0 BARAMULA 8 SOPORE 1 BARAMULLA
16 Jammu & Kashmir 1 9 2008 12 1 2009 2008-12-01 1 1 JAMMU & KASHMIR 2.0 BARAMULA 9 GUREZ 1 BARAMULLA
17 Jammu & Kashmir 1 9 2014 12 1 2015 2014-12-01 1 1 JAMMU & KASHMIR 2.0 BARAMULA 9 GUREZ 1 BARAMULLA
18 Jammu & Kashmir 1 10 2008 12 1 2009 2008-12-01 1 1 JAMMU & KASHMIR 2.0 BARAMULA 10 BANDIPORA 1 BARAMULLA
19 Jammu & Kashmir 1 10 2014 12 1 2015 2014-12-01 1 1 JAMMU & KASHMIR 2.0 BARAMULA 10 BANDIPORA 1 BARAMULLA
20 Jammu & Kashmir 1 11 2008 12 1 2009 2008-12-01 1 1 JAMMU & KASHMIR 2.0 BARAMULA 11 SONAWARI 1 BARAMULLA
21 Jammu & Kashmir 1 11 2014 12 1 2015 2014-12-01 1 1 JAMMU & KASHMIR 2.0 BARAMULA 11 SONAWARI 1 BARAMULLA
22 Jammu & Kashmir 1 12 2008 12 1 2009 2008-12-01 1 1 JAMMU & KASHMIR 2.0 BARAMULA 12 SANGRAMA 1 BARAMULLA
23 Jammu & Kashmir 1 12 2014 12 1 2015 2014-12-01 1 1 JAMMU & KASHMIR 2.0 BARAMULA 12 SANGRAMA 1 BARAMULLA
24 Jammu & Kashmir 1 13 2008 12 1 2009 2008-12-01 1 1 JAMMU & KASHMIR 2.0 BARAMULA 13 BARAMULA 1 BARAMULLA
25 Jammu & Kashmir 1 13 2014 12 1 2015 2014-12-01 1 1 JAMMU & KASHMIR 2.0 BARAMULA 13 BARAMULA 1 BARAMULLA
26 Jammu & Kashmir 1 14 2008 12 1 2009 2008-12-01 1 1 JAMMU & KASHMIR 2.0 BARAMULA 14 GULMARG 1 BARAMULLA
27 Jammu & Kashmir 1 14 2014 12 1 2015 2014-12-01 1 1 JAMMU & KASHMIR 2.0 BARAMULA 14 GULMARG 1 BARAMULLA
28 Jammu & Kashmir 1 15 2008 12 1 2009 2008-12-01 1 1 JAMMU & KASHMIR 2.0 BARAMULA 15 PATTAN 1 BARAMULLA
29 Jammu & Kashmir 1 15 2014 12 1 2015 2014-12-01 1 1 JAMMU & KASHMIR 2.0 BARAMULA 15 PATTAN 1 BARAMULLA
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
8328 Puducherry 34 16 2011 5 1 2011 2011-05-01 1 34 PUDUCHERRY 2.0 PONDICHERRY 16 Orleampeth 1 PONDICHERRY
8329 Puducherry 34 16 2016 5 1 2016 2016-05-01 1 34 PUDUCHERRY 2.0 PONDICHERRY 16 Orleampeth 1 PONDICHERRY
8330 Puducherry 34 17 2011 5 1 2011 2011-05-01 1 34 PUDUCHERRY 2.0 PONDICHERRY 17 Nellithope 1 PONDICHERRY
8331 Puducherry 34 17 2016 5 1 2016 2016-05-01 1 34 PUDUCHERRY 2.0 PONDICHERRY 17 Nellithope 1 PONDICHERRY
8332 Puducherry 34 18 2011 5 1 2011 2011-05-01 1 34 PUDUCHERRY 2.0 PONDICHERRY 18 Mudaliarpet 1 PONDICHERRY
8333 Puducherry 34 18 2016 5 1 2016 2016-05-01 1 34 PUDUCHERRY 2.0 PONDICHERRY 18 Mudaliarpet 1 PONDICHERRY
8334 Puducherry 34 19 2011 5 1 2011 2011-05-01 1 34 PUDUCHERRY 2.0 PONDICHERRY 19 Ariankuppam 1 PONDICHERRY
8335 Puducherry 34 19 2016 5 1 2016 2016-05-01 1 34 PUDUCHERRY 2.0 PONDICHERRY 19 Ariankuppam 1 PONDICHERRY
8336 Puducherry 34 20 2011 5 1 2011 2011-05-01 1 34 PUDUCHERRY 2.0 PONDICHERRY 20 Manavely 1 PONDICHERRY
8337 Puducherry 34 20 2016 5 1 2016 2016-05-01 1 34 PUDUCHERRY 2.0 PONDICHERRY 20 Manavely 1 PONDICHERRY
8338 Puducherry 34 21 2011 5 1 2011 2011-05-01 1 34 PUDUCHERRY 2.0 PONDICHERRY 21 Embalam (SC) 1 PONDICHERRY
8339 Puducherry 34 21 2016 5 1 2016 2016-05-01 1 34 PUDUCHERRY 2.0 PONDICHERRY 21 Embalam (SC) 1 PONDICHERRY
8340 Puducherry 34 22 2011 5 1 2011 2011-05-01 1 34 PUDUCHERRY 2.0 PONDICHERRY 22 Nettapakkam (SC) 1 PONDICHERRY
8341 Puducherry 34 22 2016 5 1 2016 2016-05-01 1 34 PUDUCHERRY 2.0 PONDICHERRY 22 Nettapakkam (SC) 1 PONDICHERRY
8342 Puducherry 34 23 2011 5 1 2011 2011-05-01 1 34 PUDUCHERRY 2.0 PONDICHERRY 23 Bahour 1 PONDICHERRY
8343 Puducherry 34 23 2016 5 1 2016 2016-05-01 1 34 PUDUCHERRY 2.0 PONDICHERRY 23 Bahour 1 PONDICHERRY
8344 Puducherry 34 24 2011 5 1 2011 2011-05-01 1 34 PUDUCHERRY 4.0 KARAIKAL 24 Nedungadu (SC) 1 PONDICHERRY
8345 Puducherry 34 24 2016 5 1 2016 2016-05-01 1 34 PUDUCHERRY 4.0 KARAIKAL 24 Nedungadu (SC) 1 PONDICHERRY
8346 Puducherry 34 25 2011 5 1 2011 2011-05-01 1 34 PUDUCHERRY 4.0 KARAIKAL 25 Thirunallar 1 PONDICHERRY
8347 Puducherry 34 25 2016 5 1 2016 2016-05-01 1 34 PUDUCHERRY 4.0 KARAIKAL 25 Thirunallar 1 PONDICHERRY
8348 Puducherry 34 26 2011 5 1 2011 2011-05-01 1 34 PUDUCHERRY 4.0 KARAIKAL 26 Karaikal North 1 PONDICHERRY
8349 Puducherry 34 26 2016 5 1 2016 2016-05-01 1 34 PUDUCHERRY 4.0 KARAIKAL 26 Karaikal North 1 PONDICHERRY
8350 Puducherry 34 27 2011 5 1 2011 2011-05-01 1 34 PUDUCHERRY 4.0 KARAIKAL 27 Karaikal South 1 PONDICHERRY
8351 Puducherry 34 27 2016 5 1 2016 2016-05-01 1 34 PUDUCHERRY 4.0 KARAIKAL 27 Karaikal South 1 PONDICHERRY
8352 Puducherry 34 28 2011 5 1 2011 2011-05-01 1 34 PUDUCHERRY 4.0 KARAIKAL 28 Neravy- T.R. Pattin 1 PONDICHERRY
8353 Puducherry 34 28 2016 5 1 2016 2016-05-01 1 34 PUDUCHERRY 4.0 KARAIKAL 28 Neravy- T.R. Pattin 1 PONDICHERRY
8354 Puducherry 34 29 2011 5 1 2011 2011-05-01 1 34 PUDUCHERRY 3.0 MAHE 29 Mahe 1 PONDICHERRY
8355 Puducherry 34 29 2016 5 1 2016 2016-05-01 1 34 PUDUCHERRY 3.0 MAHE 29 Mahe 1 PONDICHERRY
8356 Puducherry 34 30 2011 5 1 2011 2011-05-01 1 34 PUDUCHERRY 1.0 YANAM 30 Yanam 1 PONDICHERRY
8357 Puducherry 34 30 2016 5 1 2016 2016-05-01 1 34 PUDUCHERRY 1.0 YANAM 30 Yanam 1 PONDICHERRY

8358 rows × 17 columns

In [25]:
# Read Match Geocoded Data
match_geocoded_file = os.path.join(data_folder, "match_geocoded.csv")
match_geocoded_df = pd.read_csv(match_geocoded_file)
match_geocoded_df
Out[25]:
panchayat district state ac_code state_code
0 ARARIA BASTI ARARIA BIHAR 49.0 10.0
1 BANGAMA ARARIA BIHAR 49.0 10.0
2 BANSBARI ARARIA BIHAR 49.0 10.0
3 BASANTPUR ARARIA BIHAR 49.0 10.0
4 BATURBARI ARARIA BIHAR 49.0 10.0
5 BELWA ARARIA BIHAR 49.0 10.0
6 BOCHI ARARIA BIHAR 49.0 10.0
7 CHATAR ARARIA BIHAR 49.0 10.0
8 DIYARI ARARIA BIHAR 49.0 10.0
9 GAIYARI ARARIA BIHAR 49.0 10.0
10 HAYATPUR ARARIA BIHAR 49.0 10.0
11 JAMUA ARARIA BIHAR 49.0 10.0
12 JHAMTA ARARIA BIHAR 49.0 10.0
13 KAMALDAHA ARARIA BIHAR 49.0 10.0
14 KAMALDAHA ARARIA BIHAR 51.0 10.0
15 KISMAT KHAWASPUR ARARIA BIHAR 49.0 10.0
16 PAIKTOLA ARARIA BIHAR 49.0 10.0
17 RAMPUR KODARKATTI ARARIA BIHAR 49.0 10.0
18 SAHASMAL ARARIA BIHAR 49.0 10.0
19 SHARANPUR ARARIA BIHAR 49.0 10.0
20 BAGNAGAR ARARIA BIHAR 50.0 10.0
21 BARA ISTAMBARAR ARARIA BIHAR 50.0 10.0
22 BHAGWANPUR ARARIA BIHAR 50.0 10.0
23 BHUNA MAJGAMA ARARIA BIHAR 50.0 10.0
24 CHAKAI ARARIA BIHAR 50.0 10.0
25 CHIRAH ARARIA BIHAR 50.0 10.0
26 DUBBA ARARIA BIHAR 50.0 10.0
27 GIRDA ARARIA BIHAR 50.0 10.0
28 HARDAR ARARIA BIHAR 50.0 10.0
29 KAKAN ARARIA BIHAR 50.0 10.0
... ... ... ... ... ...
123628 BOJJAGUDEM THANDA NALGONDA TELANGANA 95.0 28.0
123629 MAMILLAGUDEM NALGONDA TELANGANA 92.0 28.0
123630 THUMMALA PALLE NALGONDA TELANGANA 93.0 28.0
123631 KANCHAN PALLE NALGONDA TELANGANA 92.0 28.0
123632 KESHAVAPURAM NALGONDA TELANGANA 88.0 28.0
123633 KESHAVAPURAM NALGONDA TELANGANA 92.0 28.0
123634 YELLA PURAM NALGONDA TELANGANA 86.0 28.0
123635 YELLA PURAM NALGONDA TELANGANA 87.0 28.0
123636 LINGAM PALLE NALGONDA TELANGANA 87.0 28.0
123637 POCHAMPALLE NALGONDA TELANGANA 87.0 28.0
123638 RAJAPET NALGONDA TELANGANA 92.0 28.0
123639 RAMACHANDRA PURAM NALGONDA TELANGANA 95.0 28.0
123640 SUNKI SHALA NALGONDA TELANGANA 93.0 28.0
123641 SUNKI SHALA NALGONDA TELANGANA 87.0 28.0
123642 KACHARAM NALGONDA TELANGANA 86.0 28.0
123643 TIRMALAPUR NIZAMABAD TELANGANA 14.0 28.0
123644 BASWAPUR NIZAMABAD TELANGANA 19.0 28.0
123645 BASWAPUR NIZAMABAD TELANGANA 14.0 28.0
123646 MIRZAPUR NIZAMABAD TELANGANA 14.0 28.0
123647 MALKAPUR NIZAMABAD TELANGANA 18.0 28.0
123648 MALKAPUR NIZAMABAD TELANGANA 17.0 28.0
123649 MALKAPUR NIZAMABAD TELANGANA 14.0 28.0
123650 HANGARGA NIZAMABAD TELANGANA 12.0 28.0
123651 DEVANPALLE NIZAMABAD TELANGANA 19.0 28.0
123652 AREPALLE NIZAMABAD TELANGANA 18.0 28.0
123653 MACHAPUR NIZAMABAD TELANGANA 12.0 28.0
123654 GOBINDAPUR PASCHIM BARDHAMAN WEST BENGAL 275.0 19.0
123655 BHURI PASCHIM BARDHAMAN WEST BENGAL 279.0 19.0
123656 KHASA AMRITSAR PUNJAB 20.0 3.0
123657 HEIR AMRITSAR PUNJAB 20.0 3.0

123658 rows × 5 columns

In [45]:
# Google Geocoded villages
google_geocoded_file = os.path.join(data_folder, 'google_geocoded.csv')
google_df = pd.read_csv(google_geocoded_file, encoding = "ISO-8859-1")
google_df_columns = list(google_df.columns)
google_df = google_df[google_df_columns[1:4] + google_df_columns[9:11]]
#Change Google Geocoded villages dataframe to geospatial and get AC data
geometry = [Point(xy) for xy in zip(google_df._longitude.apply(pd.to_numeric, errors='coerce'), google_df._latitude.apply(pd.to_numeric, errors='coerce'))]
crs = {'init': 'epsg:4326'}
google_geo_df = gpd.GeoDataFrame(google_df, crs=crs, geometry=geometry)
# Spatial Join
google_geo_df = gpd.sjoin(google_geo_df, ac_gdf, how='inner', op='within')
google_geo_df_columns = list(google_geo_df.columns)
google_geo_df = google_geo_df[google_geo_df_columns[0:3] + google_geo_df_columns[12:13] + google_geo_df_columns[8:9]]
google_geo_df.columns = ['panchayat', 'state', 'district', 'ac_code', 'state_code']
google_geo_df
Out[45]:
panchayat state district ac_code state_code
0 CHANDARDEI BIHAR ARARIA 235 10
87 BELWAN BIHAR AURANAGABAD 235 10
1464 GOVIND BIGHA BIHAR NAWADA 235 10
1525 AMAWA WEST BIHAR NAWADA 235 10
1526 ANDHARWARI BIHAR NAWADA 235 10
1527 RAJAULI WEST BIHAR NAWADA 235 10
1529 DHAMANI BIHAR NAWADA 235 10
1534 RAJAULI EAST BIHAR NAWADA 235 10
36440 AKRI PANDEY BIGHA PANCHYAT BIHAR NAWADA 235 10
36442 BIJU BIGHA PANCHYAT BIHAR NAWADA 235 10
36443 BISIAIT PANCHYAT BIHAR NAWADA 235 10
36444 MESKAUR PANCHYAT BIHAR NAWADA 235 10
36445 MIRZAPUR PANCHYAT BIHAR NAWADA 235 10
1 HARIYA BIHAR ARARIA 49 10
2 KUSIYARGAON BIHAR ARARIA 49 10
5 MADANPUR (E) BIHAR ARARIA 49 10
6 RAMPUR MOHANPUR (E) BIHAR ARARIA 49 10
7 MADANPUR (W) BIHAR ARARIA 49 10
11 RAMPUR MOHANPUR (W) BIHAR ARARIA 49 10
15 CHOUKTA BIHAR ARARIA 49 10
19 SISOUNA BIHAR ARARIA 49 10
22 DEHTI (N) BIHAR ARARIA 49 10
24 MIYANPUR BIHAR ARARIA 49 10
2398 KHOKHA DAKSHIN BIHAR PURNIA 49 10
10377 AMOUNA BIHAR ARARIA 49 10
10383 RAMPUR (S) BIHAR ARARIA 49 10
3 GAIRA BIHAR ARARIA 203 10
1002 KHARASARA BIHAR KAIMUR (BHABUA) 203 10
71154 KESHOPUR UTTAR PRADESH ETAWAH 203 10
4 PAKHARIYA BIHAR ARARIA 174 10
... ... ... ... ... ...
154564 MOLKONBUNG MANIPUR SENAPATI 7 14
154572 POIROU TANGKHUL MANIPUR SENAPATI 31 14
155046 DHIR PUNJAB GURDASPUR 9 3
155049 LONGOWAL PUNJAB GURDASPUR 9 3
155264 HABAT PINDI PUNJAB PATHANKOT 9 3
155048 KOTLA BAJJA SINGH PUNJAB GURDASPUR 8 3
155051 KHUNDI PUNJAB GURDASPUR 8 3
155089 CHEEMA PUNJAB HOSHIARPUR 43 3
155090 DAGAN PUNJAB HOSHIARPUR 43 3
155093 KOLPUR PUNJAB HOSHIARPUR 43 3
155101 ULAH PUNJAB HOSHIARPUR 43 3
155103 BAROTI PUNJAB HOSHIARPUR 43 3
155104 BASSI GULAM HUSSAIN PUNJAB HOSHIARPUR 43 3
155111 SAINCHAN PUNJAB HOSHIARPUR 43 3
155112 SARAIN PUNJAB HOSHIARPUR 43 3
155115 BAHADURPUR BAHIAN PUNJAB HOSHIARPUR 43 3
155118 CHAK SADHU PUNJAB HOSHIARPUR 43 3
155119 CHOHAL PUNJAB HOSHIARPUR 43 3
155120 DADA PUNJAB HOSHIARPUR 43 3
155122 HARMOYA PUNJAB HOSHIARPUR 43 3
155123 HUKRAN PUNJAB HOSHIARPUR 43 3
155127 NARI PUNJAB HOSHIARPUR 43 3
155142 BHANGALA NEW PUNJAB HOSHIARPUR 43 3
155145 DEVI DAS PUNJAB HOSHIARPUR 43 3
155160 BATWARA PUNJAB HOSHIARPUR 43 3
155163 BEH JOGAN PUNJAB HOSHIARPUR 43 3
155167 BHAVNAUR PUNJAB HOSHIARPUR 43 3
155212 TAJPUR BET PUNJAB LUDHIANA 60 3
155218 GHARKHAN PUNJAB LUDHIANA 60 3
155222 LALLAURI KALAN PUNJAB LUDHIANA 60 3

154996 rows × 5 columns

In [46]:
geocoded_df = pd.concat([match_geocoded_df, google_geo_df])
geocoded_df
C:\Users\sandyjones\AppData\Local\conda\conda\envs\geo\lib\site-packages\ipykernel_launcher.py:1: FutureWarning: Sorting because non-concatenation axis is not aligned. A future version
of pandas will change to not sort by default.

To accept the future behavior, pass 'sort=False'.

To retain the current behavior and silence the warning, pass 'sort=True'.

  """Entry point for launching an IPython kernel.
Out[46]:
ac_code district panchayat state state_code
0 49.0 ARARIA ARARIA BASTI BIHAR 10.0
1 49.0 ARARIA BANGAMA BIHAR 10.0
2 49.0 ARARIA BANSBARI BIHAR 10.0
3 49.0 ARARIA BASANTPUR BIHAR 10.0
4 49.0 ARARIA BATURBARI BIHAR 10.0
5 49.0 ARARIA BELWA BIHAR 10.0
6 49.0 ARARIA BOCHI BIHAR 10.0
7 49.0 ARARIA CHATAR BIHAR 10.0
8 49.0 ARARIA DIYARI BIHAR 10.0
9 49.0 ARARIA GAIYARI BIHAR 10.0
10 49.0 ARARIA HAYATPUR BIHAR 10.0
11 49.0 ARARIA JAMUA BIHAR 10.0
12 49.0 ARARIA JHAMTA BIHAR 10.0
13 49.0 ARARIA KAMALDAHA BIHAR 10.0
14 51.0 ARARIA KAMALDAHA BIHAR 10.0
15 49.0 ARARIA KISMAT KHAWASPUR BIHAR 10.0
16 49.0 ARARIA PAIKTOLA BIHAR 10.0
17 49.0 ARARIA RAMPUR KODARKATTI BIHAR 10.0
18 49.0 ARARIA SAHASMAL BIHAR 10.0
19 49.0 ARARIA SHARANPUR BIHAR 10.0
20 50.0 ARARIA BAGNAGAR BIHAR 10.0
21 50.0 ARARIA BARA ISTAMBARAR BIHAR 10.0
22 50.0 ARARIA BHAGWANPUR BIHAR 10.0
23 50.0 ARARIA BHUNA MAJGAMA BIHAR 10.0
24 50.0 ARARIA CHAKAI BIHAR 10.0
25 50.0 ARARIA CHIRAH BIHAR 10.0
26 50.0 ARARIA DUBBA BIHAR 10.0
27 50.0 ARARIA GIRDA BIHAR 10.0
28 50.0 ARARIA HARDAR BIHAR 10.0
29 50.0 ARARIA KAKAN BIHAR 10.0
... ... ... ... ... ...
154564 7.0 SENAPATI MOLKONBUNG MANIPUR 14.0
154572 31.0 SENAPATI POIROU TANGKHUL MANIPUR 14.0
155046 9.0 GURDASPUR DHIR PUNJAB 3.0
155049 9.0 GURDASPUR LONGOWAL PUNJAB 3.0
155264 9.0 PATHANKOT HABAT PINDI PUNJAB 3.0
155048 8.0 GURDASPUR KOTLA BAJJA SINGH PUNJAB 3.0
155051 8.0 GURDASPUR KHUNDI PUNJAB 3.0
155089 43.0 HOSHIARPUR CHEEMA PUNJAB 3.0
155090 43.0 HOSHIARPUR DAGAN PUNJAB 3.0
155093 43.0 HOSHIARPUR KOLPUR PUNJAB 3.0
155101 43.0 HOSHIARPUR ULAH PUNJAB 3.0
155103 43.0 HOSHIARPUR BAROTI PUNJAB 3.0
155104 43.0 HOSHIARPUR BASSI GULAM HUSSAIN PUNJAB 3.0
155111 43.0 HOSHIARPUR SAINCHAN PUNJAB 3.0
155112 43.0 HOSHIARPUR SARAIN PUNJAB 3.0
155115 43.0 HOSHIARPUR BAHADURPUR BAHIAN PUNJAB 3.0
155118 43.0 HOSHIARPUR CHAK SADHU PUNJAB 3.0
155119 43.0 HOSHIARPUR CHOHAL PUNJAB 3.0
155120 43.0 HOSHIARPUR DADA PUNJAB 3.0
155122 43.0 HOSHIARPUR HARMOYA PUNJAB 3.0
155123 43.0 HOSHIARPUR HUKRAN PUNJAB 3.0
155127 43.0 HOSHIARPUR NARI PUNJAB 3.0
155142 43.0 HOSHIARPUR BHANGALA NEW PUNJAB 3.0
155145 43.0 HOSHIARPUR DEVI DAS PUNJAB 3.0
155160 43.0 HOSHIARPUR BATWARA PUNJAB 3.0
155163 43.0 HOSHIARPUR BEH JOGAN PUNJAB 3.0
155167 43.0 HOSHIARPUR BHAVNAUR PUNJAB 3.0
155212 60.0 LUDHIANA TAJPUR BET PUNJAB 3.0
155218 60.0 LUDHIANA GHARKHAN PUNJAB 3.0
155222 60.0 LUDHIANA LALLAURI KALAN PUNJAB 3.0

278654 rows × 5 columns

In [47]:
geocoded_df.to_csv(os.path.join(output_folder, 'geocoded.csv'), encoding='utf-8', index=False)